APPENDIX A

CALCULATIONS

Calculation of Joint Rotation & Eccentricity

Notes

 $1\ Calculations\ based\ on\ TII\ Document\ CA/HA/BT/C11/54026/02/O\ pg\ 4/3$

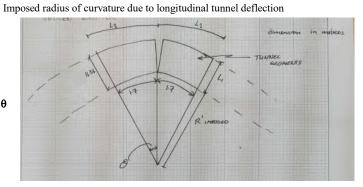
2 Input by user is in blue text

0.8 0.4 5595 56.8 5595.4 5594.6 5326 -0.0003 11190.8 -34243454.2 3060.2 61.58 61.57	mm mm degrees	
5595 56.8 5595.4 5594.6 5326 -0.0003 11190.8 -34243454.2 3060.2 61.58	mm degrees	
56.8 5595.4 5594.6 5326 -0.0003 11190.8 -34243454.2 3060.2 61.58	degrees	
56.8 5595.4 5594.6 5326 -0.0003 11190.8 -34243454.2 3060.2 61.58	degrees	
5595.4 5594.6 5326 -0.0003 11190.8 -34243454.2 3060.2 61.58	mm	
5594.6 5326 -0.0003 11190.8 -34243454.2 3060.2 61.58		
5594.6 5326 -0.0003 11190.8 -34243454.2 3060.2 61.58		
5326 -0.0003 11190.8 -34243454.2 3060.2 61.58		
-0.0003 11190.8 -34243454.2 3060.2 61.58		
11190.8 -34243454.2 3060.2 61.58		
-34243454.2 3060.2 61.58		
3060.2 61.58		
61.58		
	degrees	
61.57		
	degrees	
α) 0.009	degrees	
0.005	degrees	
170		
	mm	
0.69	mm	Opening caused by joint rotation ref 4/6A
8270	mm	High Contact Width relates to very low rotation of joint angle (i.e. low birdsmouthing between two segments)
170	mm	
90	mm	
350	mm	
28.3	mm	=Min eccentricity due to linear distribution of load over length of packing
	170 2.00 0.67 0.66 0.69 8270 170 90 350	170 mm 2.00 mm 0.67 mm 0.66 mm 0.69 mm 8270 mm 170 mm 170 mm

Assessment of Joint Opening due to Longitudinal Curvature of Tunnels

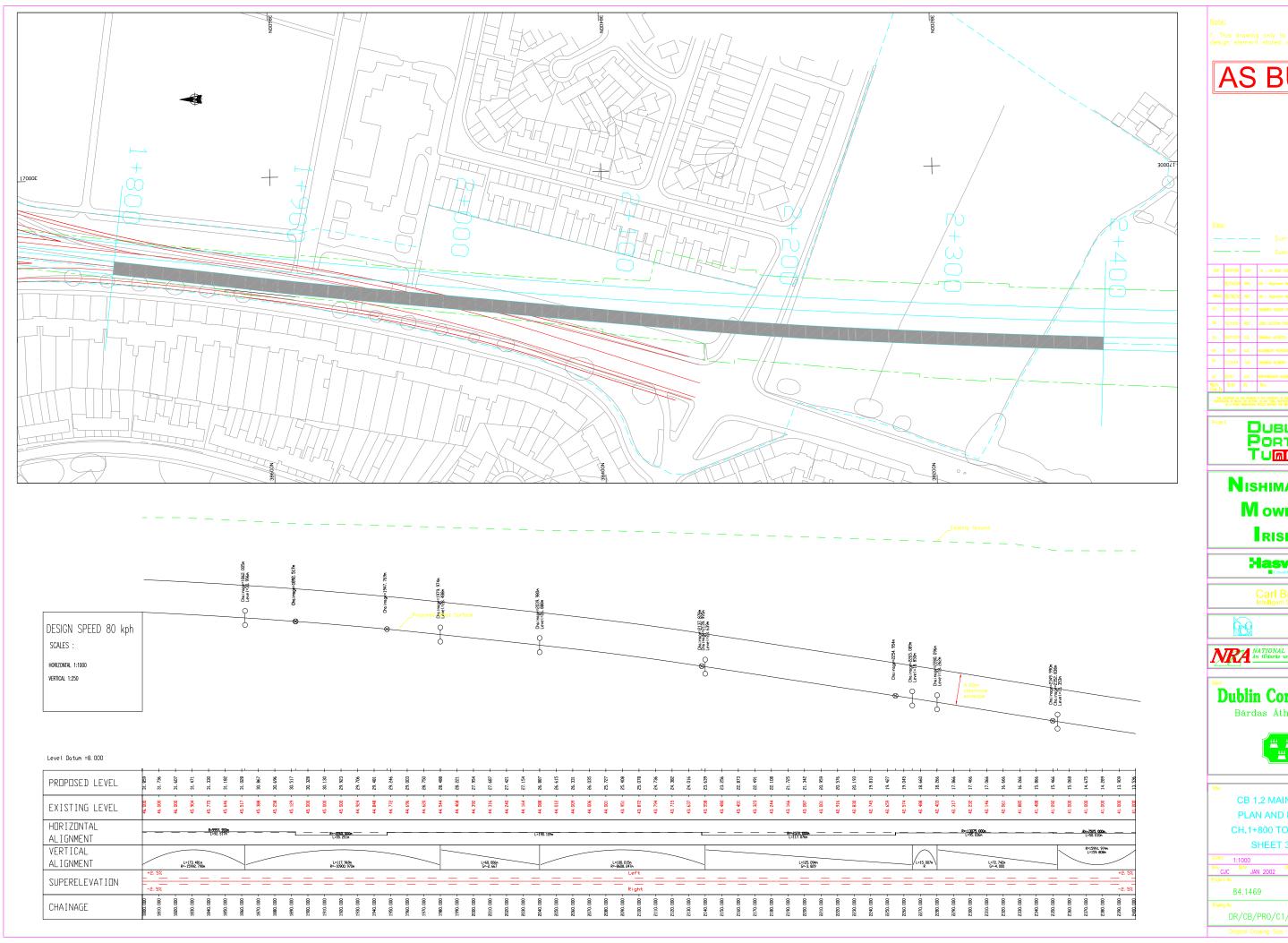
IMPOSED RADIUS OF CURVATURE (R') DUE TO DEVELOPMENT

L 10 m Distance between points of inflect δ 0.03 mm Maximum displacement between points of inflection $R' = (L/2)^2 / 2\delta$ $R' = Imposed \ radius \ of \ curvature$


R' 416.67 km Imposed radius of curvature due to

CHECK FOR OPENING OF TUNNEL JOINTS

 $\begin{array}{ccc} R' & 416666667 \ mm \\ L1 & 1700.0 \ mm \\ \theta \ '=\!L1/R' & 4.08E-06 \ radians \\ Tunnel \ diameter & 1.15E+04 \ mm \end{array}$


L2 $1700.047 = (R'+L1) \theta$

Joint Opening 0.05 mm

APPENDIX B

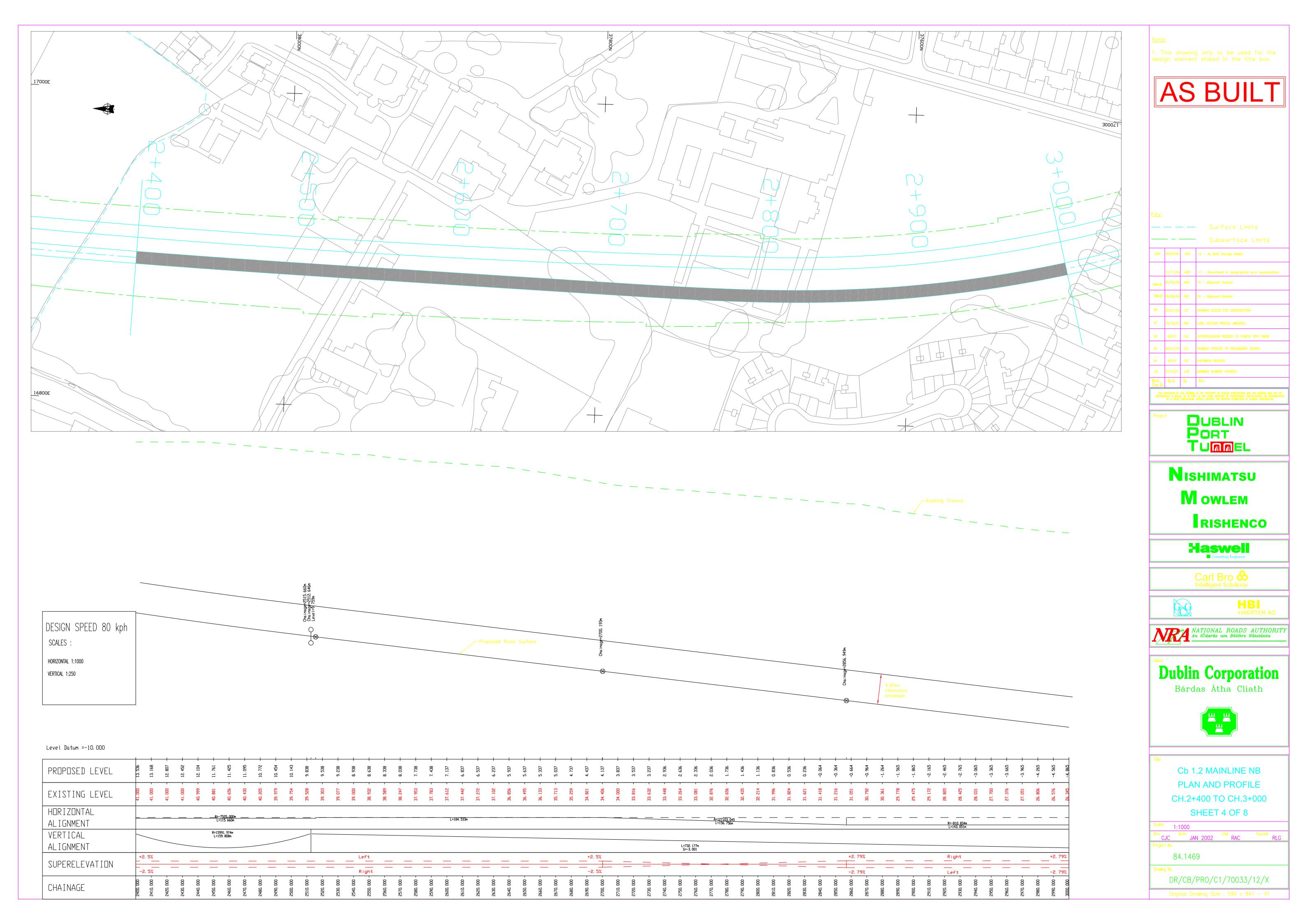
AS-BUILT DRAWINGS OF DUBLIN PORT TUNNELS

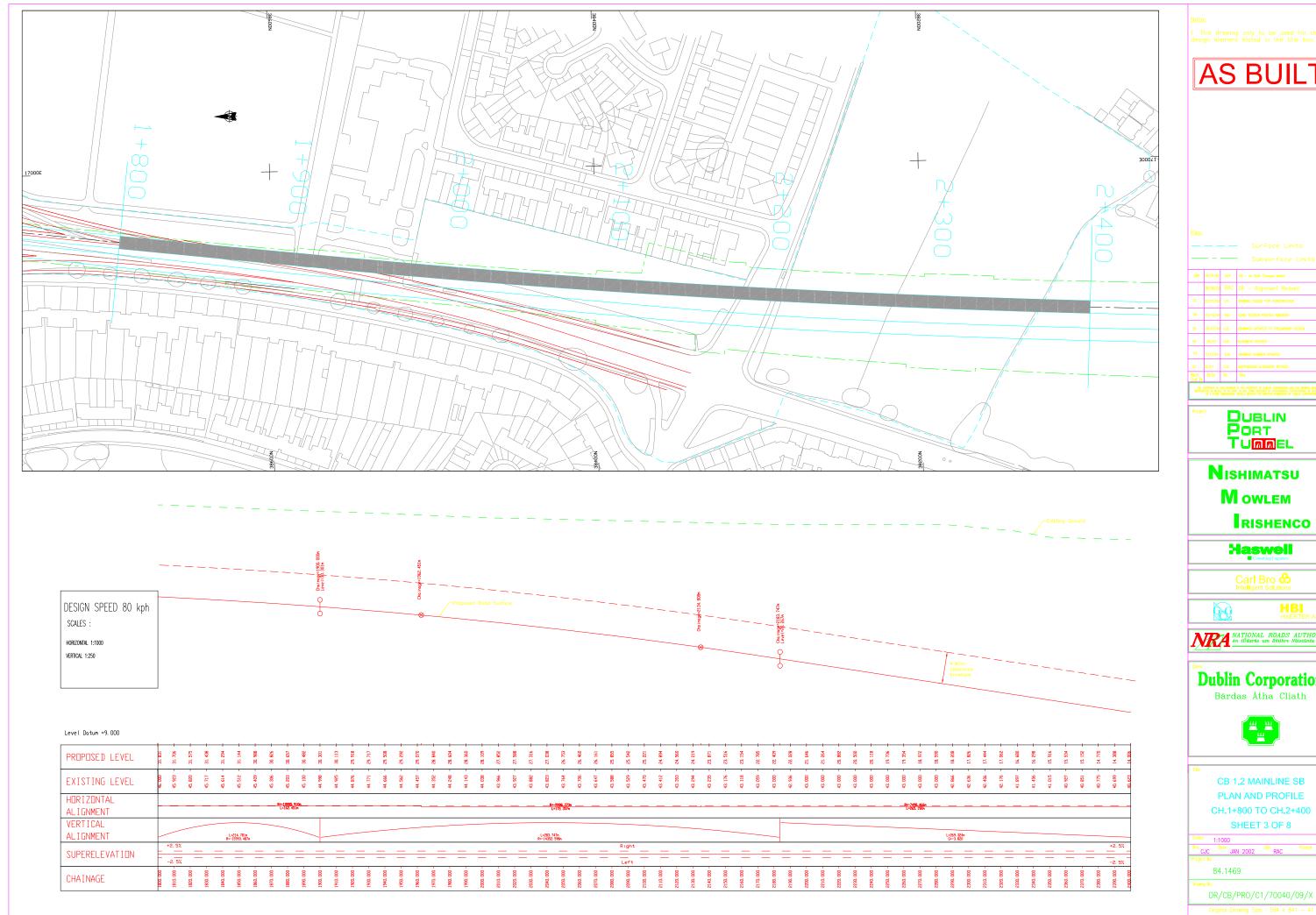
AS BUILT

	04/07/06		10 — As Built Changes Added
	05/04/04	RAC	09 - Alignment Revised
GMacD	28/08/03	RAC	08 - Alignment Revised
	22/01/02	LYT	DRAWING ISSUED FOR CONSTRUCTION
06	10/10/01	RAC	LONG SECTION PROFILE AMENDED.
05	06/07/01	cuc	DRAWING UPDATED TO PRELIMINARY DESIGN
04	05/01	cuc	ALIGNMENT REVISED.
03	27/3/01	SJ0	DRAWING NUMBER UPDATED
02	02/01	CJC	NORTHBOUND AUGNMENT REVISED.

NISHIMATSU M owlem RISHENCO

Haswell
Consulting Engineers


Dublin Corporation

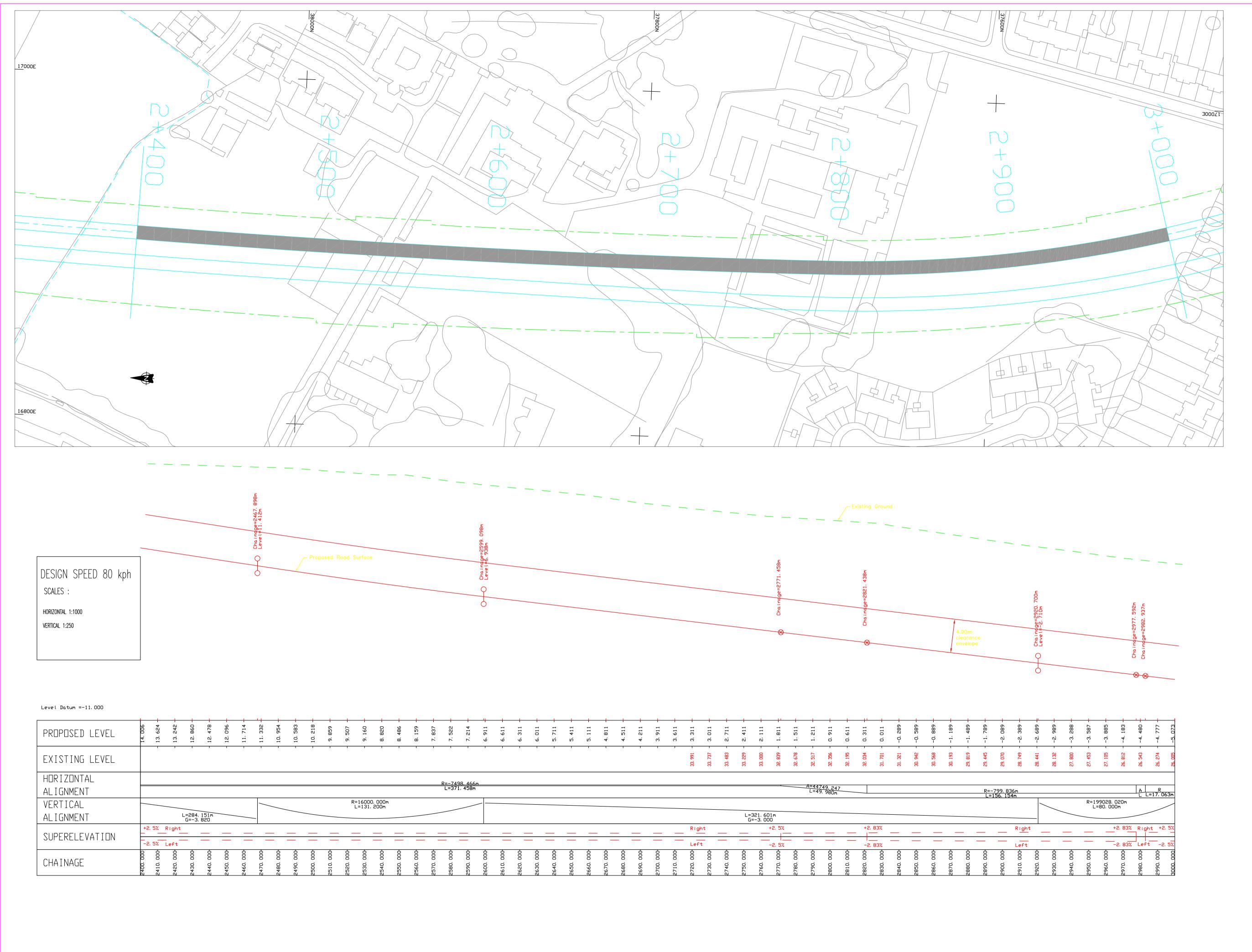

Bárdas Átha Cliath

CB 1.2 MAINLINE NB PLAN AND PROFILE CH.1+800 TO CH.2+400 SHEET 3 OF 8

DR/CB/PRO/C1/70032/10/X

AS BUILT

DUBLIN PORT TUMMEL


M owlem RISHENCO

NATIONAL ROADS AUTHO
An tÜdarās um Böthre Nāistinta

Dublin Corporation
Bárdas Átha Cliath

CB 1.2 MAINLINE SB PLAN AND PROFILE CH.1+800 TO CH.2+400

AS BUILT

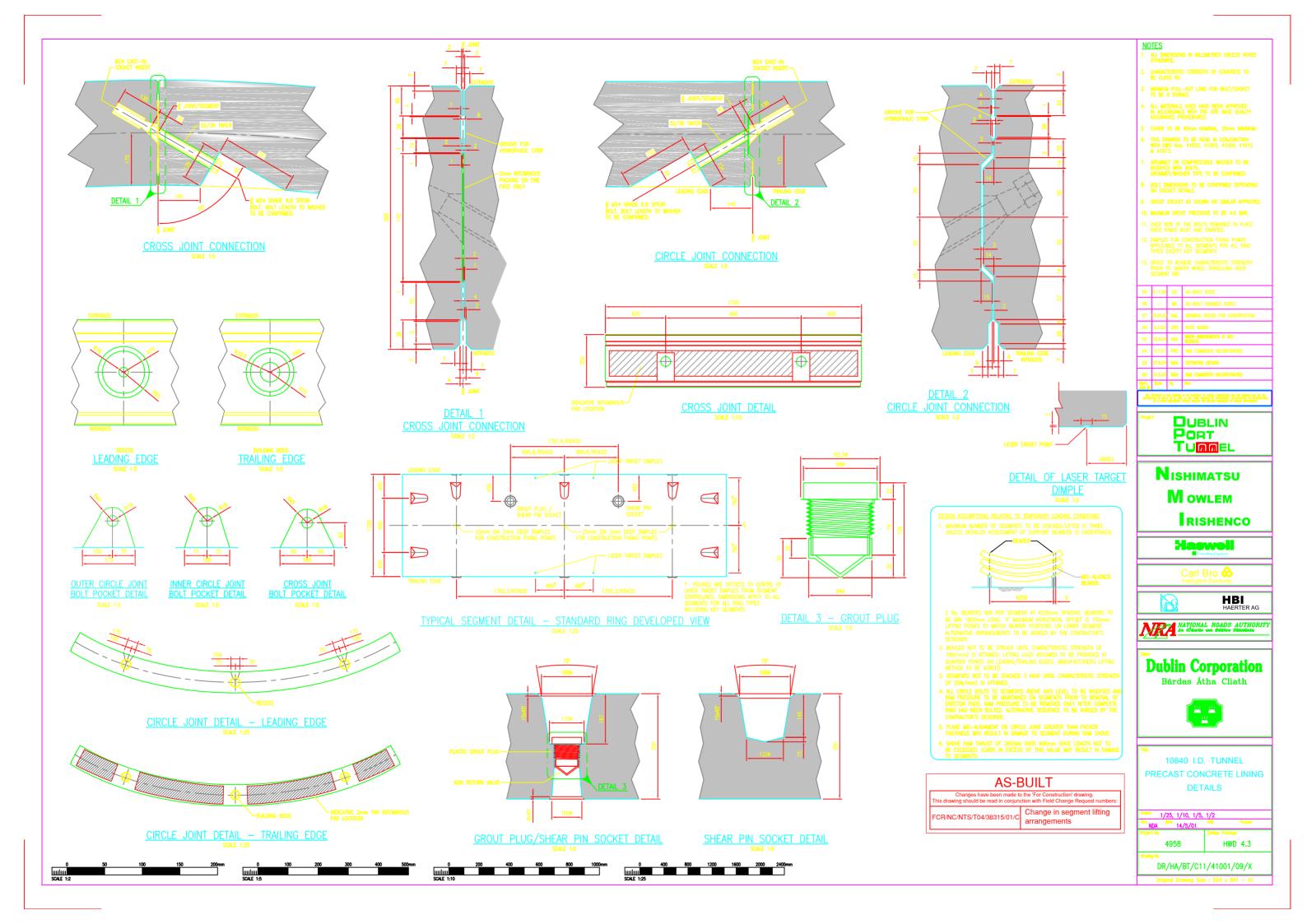
— — — Surface Limits — - Subsurface Limits

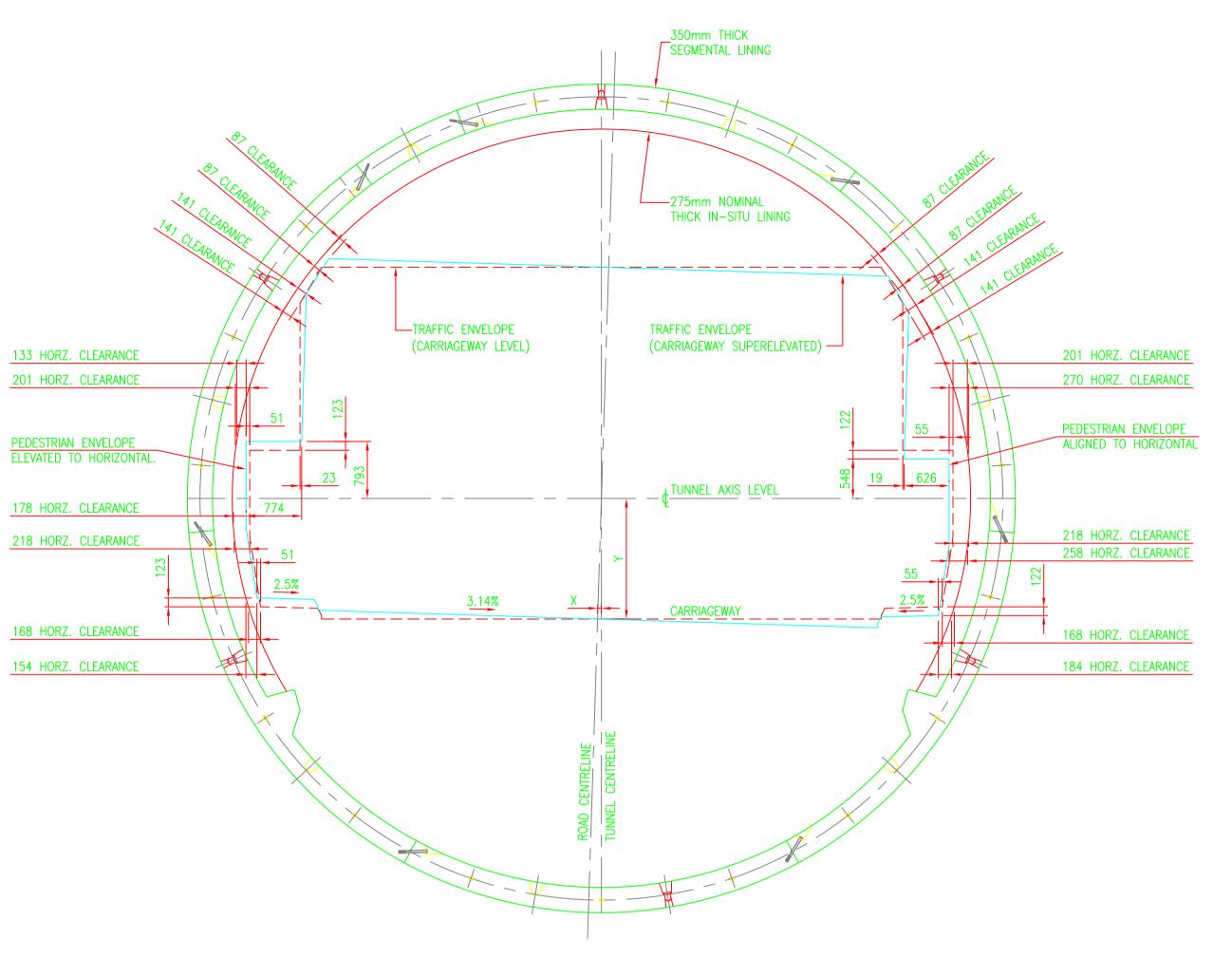
DGP	04/07/06	DGP	11 — As Built Changes Added	
	25/09/04	KRG	10 - Alignment Revised (5-57)	
GMacD	05/04/04	DRM	09 - Alignment Revised	
GMacD	28/08/03	RAC	08 - Alignment Revised	
07	22/01/02	LYT	DRAWING ISSUED FOR CONSTRUCTION	
06	10/10/01	RAC	LONG SECTION PROFILE AMENDED.	
05	06/07/01	CJC	DRAWING REVISED TO PRELIMINARY DESIGN	
04	05/01	CJC	ALIGNMENT REVISED.	
03	27/3/01	SJD	DRAWING NUMBER UPDATED	
02	02/01	CJC	NORTHBOUND ALIGNMENT REVISED.	
Mark Chal Pu	Date	Ву	Rev.	

NISHIMATSU M owlem RISHENCO

Haswell Consulting Engineers

Dublin Corporation Bárdas Átha Cliath




CB 1.2 MAINLINE SB PLAN AND PROFILE CH.2+400 TO CH.3+000 SHEET 4 OF 8

Scales 1:1000

84.1469

DR/CB/PRO/C1/70041/11/X

DISPLACEMENT BETWEEN ROAD AND TUNNEL ALIGNMENT TO SUIT ROAD SUPERELEVATION (MAX. SHOWN)

SCALE 1:50

NOTE:

CLEARANCES MAY VARY FROM
THEORETICAL DUE TO DRIVING
TOLERANCES AND DESIGN
REALIGNMENTS. REFER TO WRIGGLE
SURVEY IN AS-BUILT RECORDS.

SUPER ELEVATION	HORIZONTAL SHIFT FROM ROAD ALIGNMENT TO TUNNEL AXIS X	VERTICAL SHIFT FROM ROAD ALIGNMENT TO TUNNEL AXIS Y
0.50%	8.40mm	1679.98mm
1.00%	16.80mm	1679.92mm
1.50%	25.20mm	1679.81mm
2.00%	33.60mm	1679.66mm
2.50%	42.00mm	1679.47mm
2.80%	47.04mm	1679.34mm
3.14%	52.75mm	1679.17mm

SCHEDULE OF SHIFT BETWEEN TUNNEL
CENTREPOINT AND CARRIAGEWAY CENTRELINE WITH
VARYING SUPER ELEVATION

₡ TUNNEL

TRAFFIC ENVELOPE (BASED ON REFERENCE DESIGN CONTRACT DRAWING 26-03-TN-401)

SCALE 1:50

<u>NOTES</u>

- NO ALLOWANCE FOR ROAD LAYING TOLERANCE IN SPECIFIED CLEARANCE. HOWEVER TOLERANCE ON ROAD SURFACE LEVEL TO BE ± 6mm FROM DESIGN POSITION IN ACCORDANCE WITH TABLE 7/1 OF VOLUME 1 OF THE NRA SPECIFICATION FOR ROAD WORKS
- 2. NO ALLOWANCE FOR ROAD RESURFACING
- 3. WALKWAYS FALL 2.5% TO HORIZONTAL, TOWARDS THE CARRIAGEWAY, IRRELEVANT OF ROAD SUPER ELEVATION. WALKWAY ENVELOPE ORIENTATED TO HORIZONTAL.
- 4. THIS DRAWING TO BE READ IN CONJUNCTION WITH DRAWING No DR/HA/BT/C11/41101.
- 5. TOLERANCE OF POSITION OF INNER LINING TO BE ± 50mm IN ACCORDANCE WITH BTS MODEL SPECIFICATION FOR TUNNELLING (1997) CLAUSE 360.1.
- 6. MINIMUM STRENGTH OF CONCRETE TO BE 10N/mm² PRIOR TO STRIKING SECONDARY LINING SHUTTER.
- 7. FINISH TO CONCRETE TO BE F3 AS EMPLOYERS REQUIREMENTS VOLUME 3, PART 3, CLAUSE 3.16.6.15, AND COATED AS CLAUSE 3.16.6.16.
- 8. LINING TO BE COATED WITH CERAMICOAT REFER TO DRAWING No's :DR/HA/BT/C11/41054,41056,41061,41063.

07	9.11.06	CD	AS-BUILT ISSUE
06	-	MA	AS-BUILT CHANGES ADDED.
05	07.11.02	SJS	FOR CONSTRUCTION
04	15.07.02	GEG	NMI COMMENTS INCORPORATED
03	08.05.02	RJY	TRAFFIC ENVELOPE REALIGNED.
02	13.11.01	SRC	NMI COMMENTS INCORPORATED
01	18.09.01	BM	FIRST ISSUE
Mark	Date	Ву	Rev.

THE COPYRIGHT IN THIS DRAWING IS THE PROPERTY OF DUBLIN CORPORATION AND THE DRAWING MAY NOT BE REPRODUCED IN WHOLE OR IN PART, IN ANY FORM, WHETHER BY PHOTOGRAPH, PHOTOCOPYING OR REPRODUCTION AS A THREE DIMENSIONAL ARRICLE WITHOUT THE WRITTEN PERMISSION OF DUBLIN CORPORATION.

HBI Haerter ag

BORED TUNNEL
TUNNEL ALIGNMENT SETTING
OUT RELATIVE TO
CARRIAGEWAY ALIGNMENT

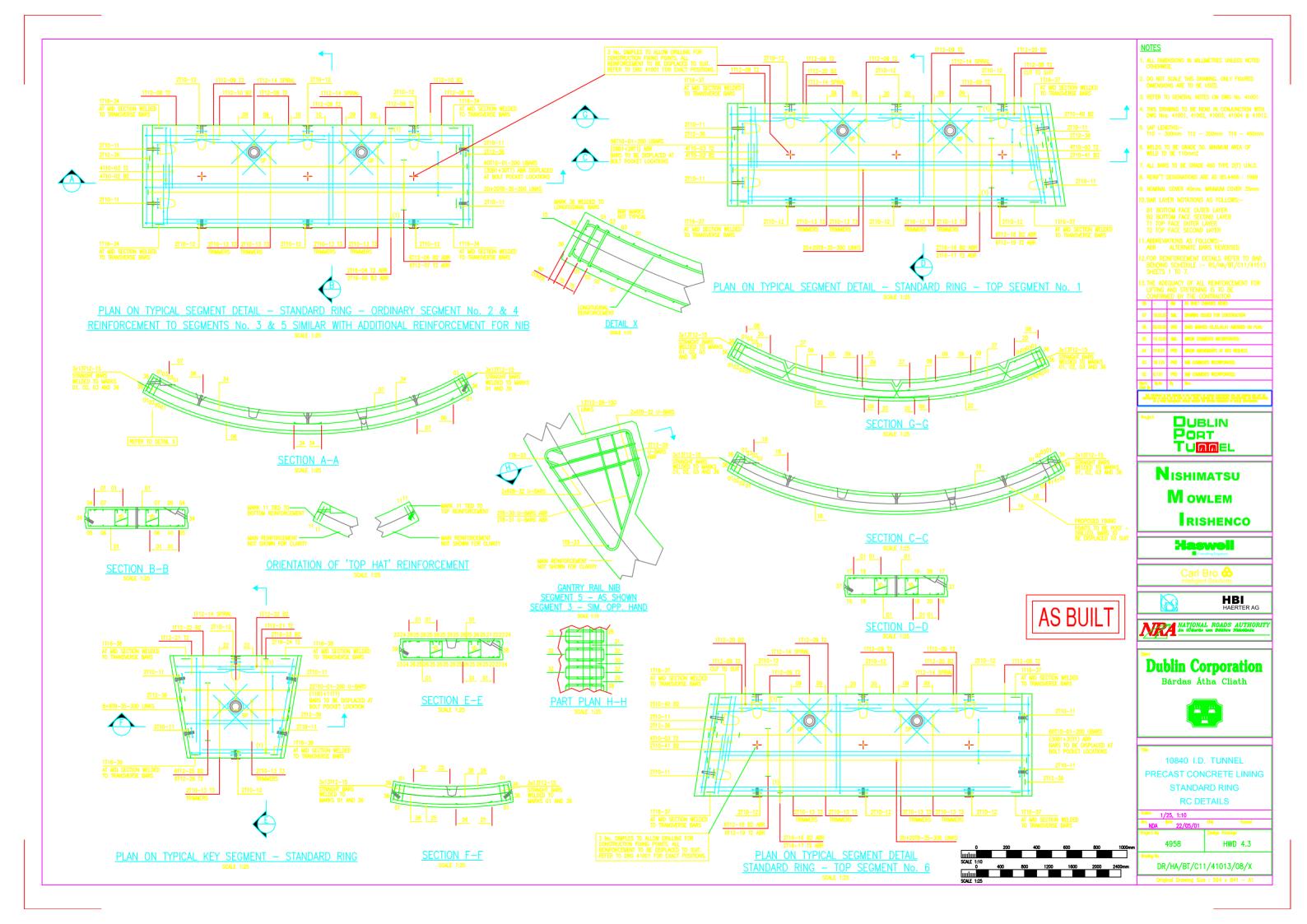
Scales 1:50
Drn. CD /PMDate 28

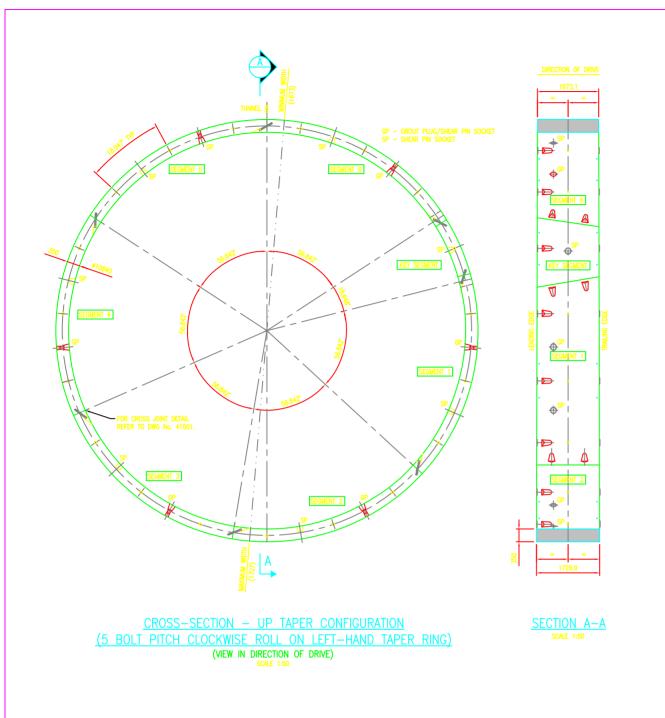
 Orn. GD/BM^{Date}
 28/02/01
 Chd.
 Passed

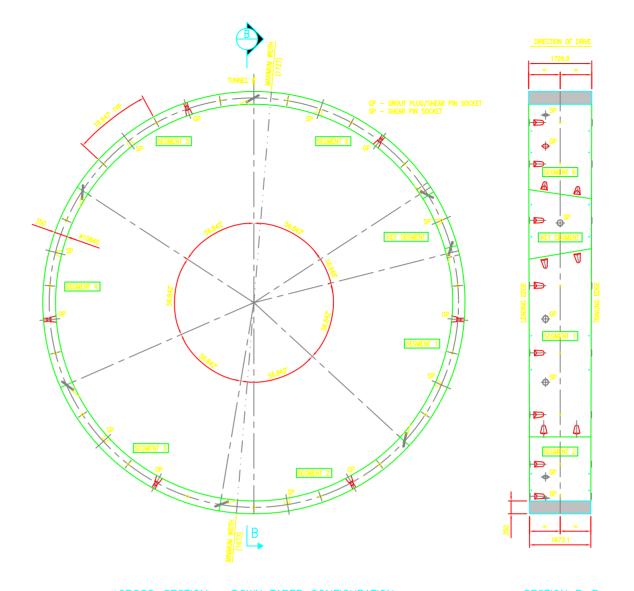
 roject No.
 Design Package

 4958
 HWD 4.4.1

Original Drawing Size : 594 x 841 - A1


AS-BUILT


O 1 2 3 4 5m


SCALE 1:50

BAR SCHEDULE Bar Schedule Ref RS/HA/BT/C11/41513/06/C 0 7 Haswell Consulting Engineers DR/HA/BT/C11/41013 Drawing Ref 4958 - DUBLIN PORT TUNNEL Project No. 22/6/01 19/02/02 Date Prepared Date Revised Package 10840 ID TUNNEL Prepared By NDA Checked by LLJ PRECAST CONCRETE LINING Structure Total Member Bar Туре No. No. of Length Shape mark of of each and bars no. code bar ** size mbrs. C* E/R* **A*** В* D* each mm mm mm mm mm 26 T12 6 6 2425 99 925 77 270 230 35 T8 16 16 36 T12 4 4 1625 20 38 T16 1200 65 1200 5585 1 + 12 2 T16 975 975 5585 39 1 + 165 NIB TO T12 2 12 24 2500 28 99 90° **SEGMENTS** 3 and 5 29 T12 2250 1000 300 (1000)2 4 38 30 T8 2 2300 930 470 (930)4 38 31 T8 2 4 2450 930 625 (930)38 1050 175 32 **T8** 2x6x2 48 38 460 (460)33 T8 1 + 14 1625 20 * Specified in multiples of 5mm. ** Specified in multiples of 25mm. (This schedule is based on BS 4466).

CROSS-SECTION - DOWN TAPER CONFIGURATION (5 BOLT PITCH CLOCKWISE ROLL ON RIGHT-HAND TAPER RING) (VIEW IN DIRECTION OF DRIVE)
SCALE 1:50

SECTION B-B SCALE 1:50

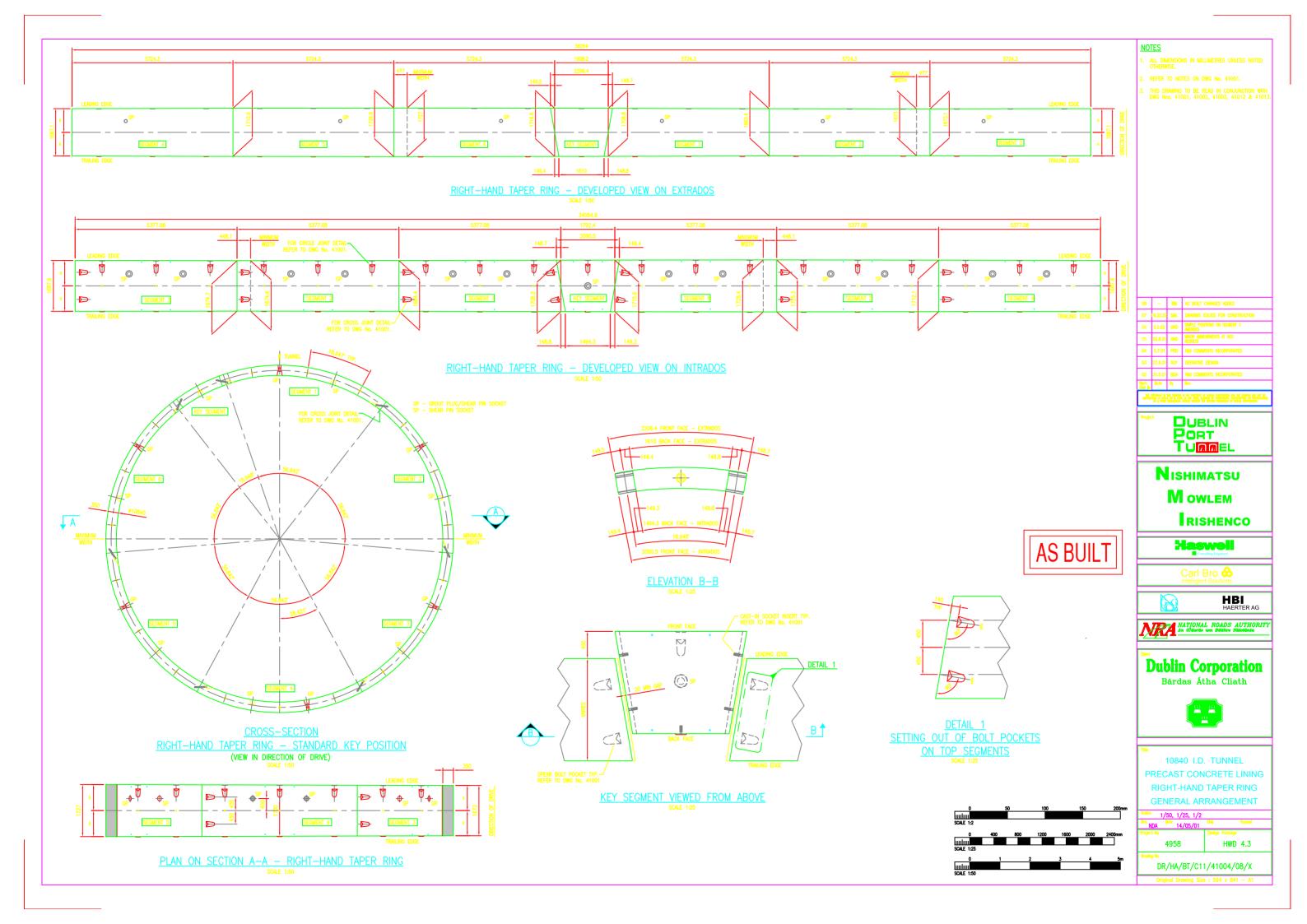
- REFER TO NOTES ON DWG No. 41001.

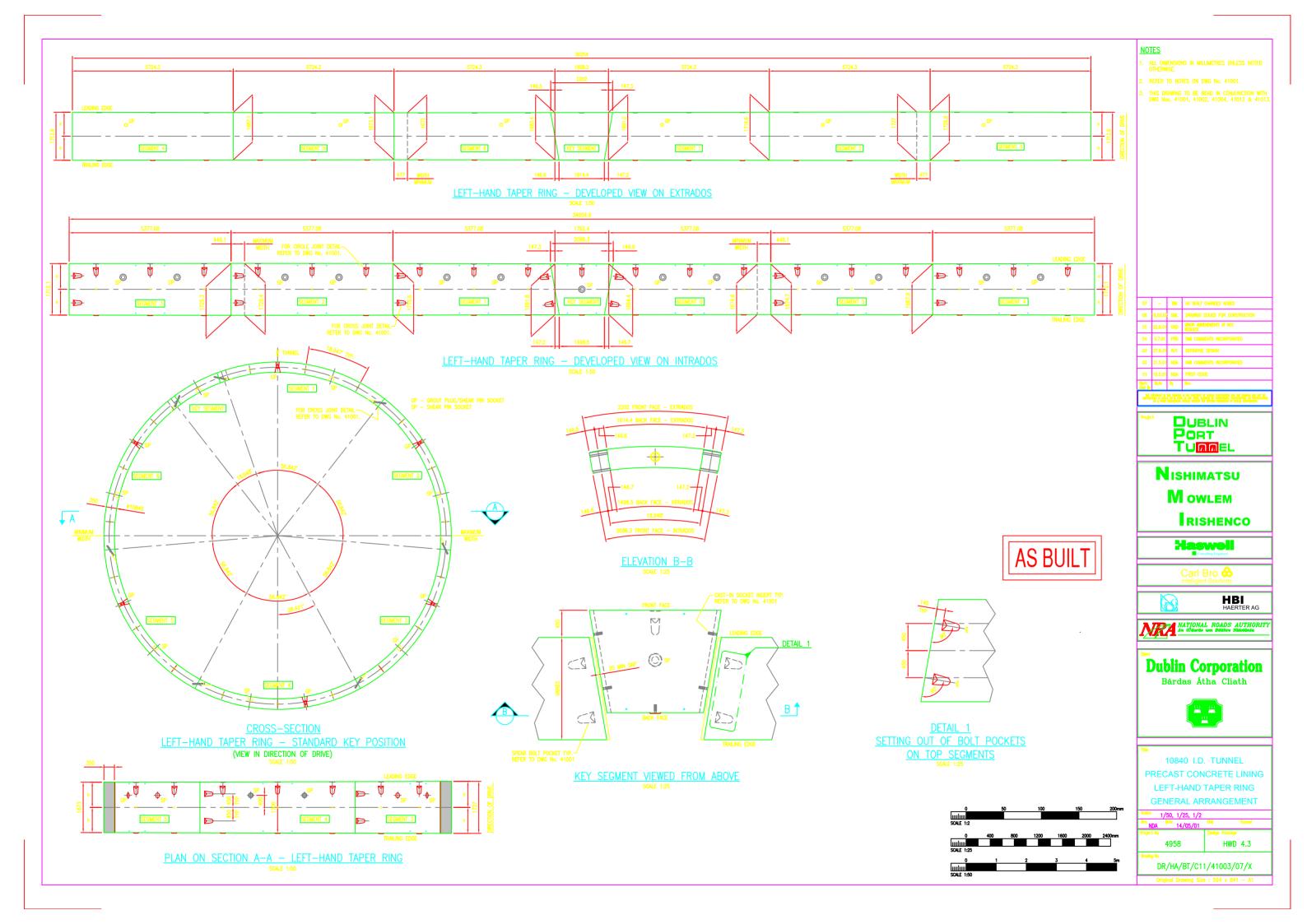
7	-	BM	AS BUILT CHANGES ADDED
)6	9.02.02	SML	DRAWING ISSUED FOR CONSTRUCTION
)5	22.8.01	GRD	MINOR AMMENDMENTS AT NCC REQUEST.
14	17.7.01	NDA	FURTHER NMI COMMENTS INCORPORATED
)3	5.7.01	PRD	NMI COMMENTS INCORPORATED
)2	27.6.01	NDA	DEFINITIVE DESIGN
)1	31.5.01	NDA	FIRST ISSUE
nk.	Date	Ву	Rev.

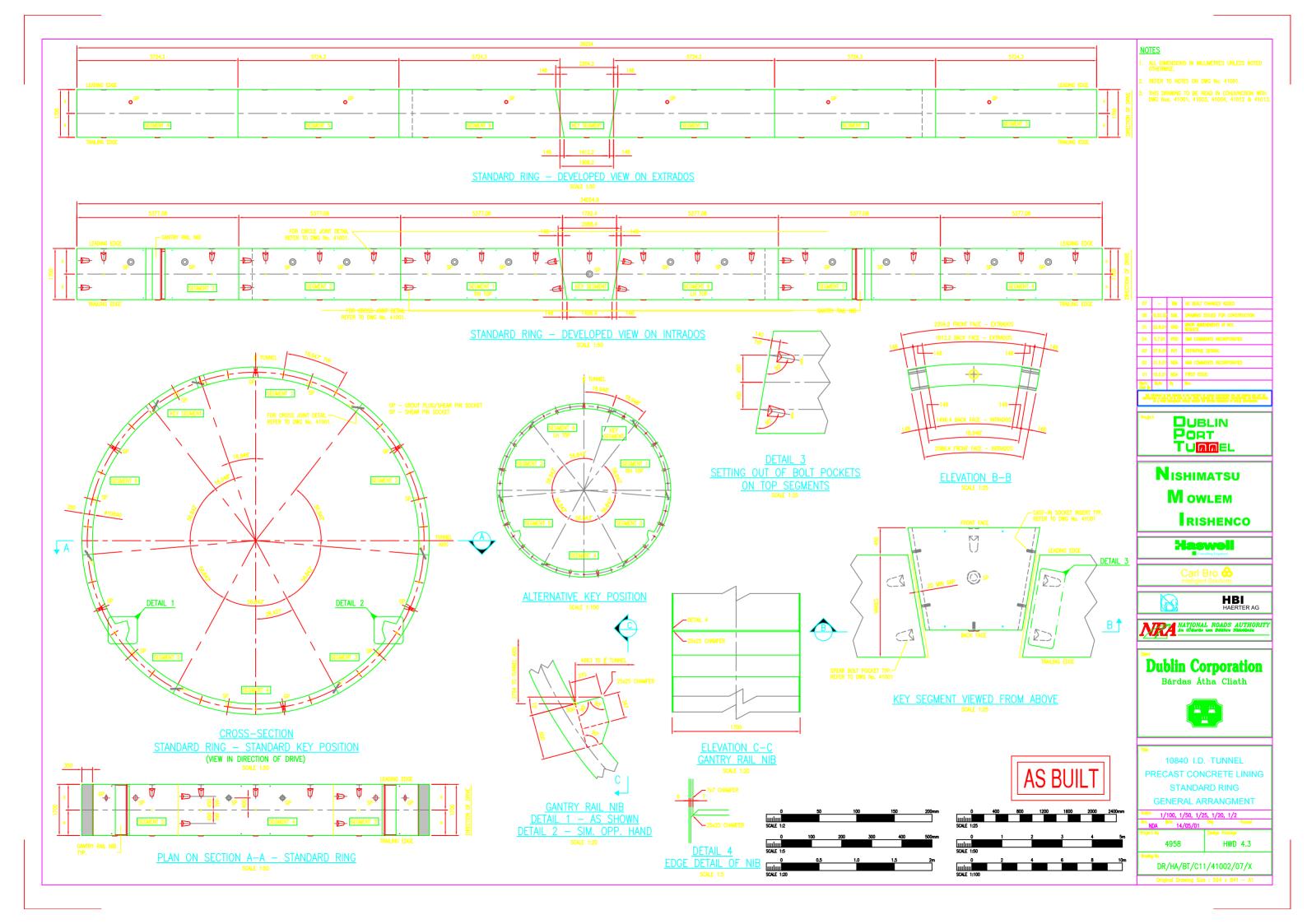
NISHIMATSU M owlem **I**RISHENCO

Haswell Consulting Engineers

HBI HAERTER AG NATIONAL ROADS AUTHORITY
An tiderds um Bötthre Nötefünts






10840 I.D. TUNNEL PRECAST CONCRETE LINING TAPER RING CONFIGURATION FOR VERTICAL CURVES

4958 HWD 4.3 DR/HA/BT/C11/41012/07/X

AS BUILT

NORTH BOUND.

EMERGENCY	CALL NICHE.	
REFERENCE	ROAD CHAINAGE	
ECN/206	2114.196	
ECN/207	FOR DETAILS SEE	WA2 SECTION
ECN/208	2525.799	
ECN/209	2774.258	
ECN/210	FOR DETAILS SEE	CLOISTERS LAYBY
ECN/211	3187.849	
ECN/212	3438.029	
ECN/213	3689.960	
ECN/214	3929.979	
ECN/215	FOR DETAILS SEE	MARINO LAYBY
ECN/216	4391.297	

HOSE REEL NICHE.

CHAINAGE

1951.708

2050.385

2150.715

2200.065

2302.090

2407.594

2451.818

2552.219

2659.42

2710.464

2802.347

2901.005

2943.521

3129.041

3227.75

3333.277

3375.847

3479.699

3592.118

3641.473

3731.665

3837.218

3881.478

3964.868

4084.035

4301.949

4337.692

4432.995

FOR DETAILS SEE MARINO LAYBY

FOR DETAILS SEE CUT & COVER SECTION

FOR DETAILS SEE CLOISTERS LAYBY

REFERENCE

HRN/17a

HRN/18a

HRN/19a

HRN/19b

HRN/20a

HRN/21a

HRN/21b

HRN/22a

HRN/23a

HRN/23b

HRN/24a

HRN/25a

HRN/25b

HRN/26a

HRN/27a

HRN/28a

HRN/29a

HRN/29b

HRN/30a

HRN/31a

HRN/31b

HRN/32a

HRN/33a

HRN/33b

HRN/34a

HRN/35a

HRN/36a

HRN/38a

FIRE FIGHTING NICHE.				
REFERENCE	ROAD CHAINAGE			
FFN/18	2008.695			
FFN/19	2097.134			
FFN/20	FOR DETAILS SEE WA2 SECTION			
FFN/21	2360.804			
FFN/22	2508.819			
FFN/23	2610.925			
FFN/24	2757.262			
FFN/25	2859.359			
FFN/26	FOR DETAILS SEE CLOISTERS LAYBY			
FFN/27	3068.694			
FFN/28	3172.479			
FFN/29	3293.281			
FFN/30	3417.577			
FFN/31	3538.392			
FFN/32	3671.246			
FFN/33	3790.364			
FFN/34	3909.554			
FFN/35	4026.998			
FFN/35b	4134.231			
FFN/36	FOR DETAILS SEE MARINO LAYBY			
FFN/37	4265.317			
FFN/38	4372.564			
FFN/39	4486.613			

FFN/35b TO BE FINALISED

PEDESTRIAN	CROSS PASS	SAGES.
REFERENCE	ROAD CHAINAGE	
PCP/06A	2107.360	
PCP/07A	2517.779	
PCP/08A	2765.731	
PCP/09A	3179.928	
PCP/10A	3429.639	
PCP/11A	3677.900	
PCP/12A	3919.783	
PCP/13A	4379.454	

SOUTH BOUND.

EMERGENCY CALL NICHE.				
REFERENCE	ROAD CHAINAGE			
ECN/104	1912.178			
ECN/105	2097.667			
ECN/106	FOR DETAILS SEE WA2 SECTION			
ECN/107	2504.138			
ECN/108	2752.532			
ECN/109	FOR DETAILS SEE CLOISTERS LAYBY			
ECN/110	3157.529			
ECN/111	3397.464			
ECN/112	3644.235			
ECN/113	3896.221			
ECN/114	FOR DETAILS SEE MARINO LAYBY			
ECN/115	4378.050			

FIRE FIGHTING NICHE.					
REFERENCE	ROAD CHAINAGE				
FFN/18	2000.648				
FFN/19	2114.664				
FFN/20	FOR DETAIL	S SEE	WA2 SECTION		
FFN/21	2403.718				
FFN/22	2526.267				
FFN/23	2650.520				
FFN/24	2771.264				
FFN/25	2886.940				
FFN/26	FOR DETAIL	S SEE	CLOISTERS LAYBY		
FFN/27	3084.333				
FFN/28	3176.254				
FFN/29	3296.988				
FFN/30	3417.828				
FFN/31	3542.130				
FFN/32	3664.723				
FFN/33	3788.978				
FFN/34	3914.949				
FFN/35	4035.831				
FFN/35b	4143.057				
FFN/36	FOR DETAILS	S SEE	MARINO LAYBY		
FFN/37	4267.374				
FFN/38	4391.672				
FFN/39	4486.960				
FFN/29 FFN/30 FFN/31 FFN/32 FFN/33 FFN/34 FFN/35 FFN/35 FFN/35 FFN/37 FFN/38	3296.988 3417.828 3542.130 3664.723 3788.978 3914.949 4035.831 4143.057 FOR DETAIL: 4267.374 4391.672	S SEE	MARINO LAYBY		

PEDESTRIAN	CROSS	PASSAGES.			
REFERENCE	ROAD CHAINAGE				
PCP/06	2107.355				
PCP/07	2515.495				
PCP/08	2763.305				
PCP/09	3166.134				
PCP/10	3409.894				
PCP/11	3655.831				
PCP/12	3907.717				
PCP/13	4384.813				

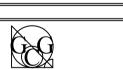
HOSE REEL	NICHE. ROAD	
REFERENCE	CHAINAGE	
HRN/17a	1945.411	
HRN/18a	2054.286	
HRN/19a	2154.700	
HRN/19b	2198.942	
HRN/20a	2316.176	
HRN/20b	2360.421	
HRN/21a	2467.554	
HRN/22a	2588.339	
HRN/23a	2710.893	
HRN/24a	2828.245	
HRN/25a	2940.637	
HRN/26a	3042.643	
HRN/27a	3129.437	
HRN/28a	3236.609	
HRN/29a	3357.436	
HRN/30a	3479.972	
HRN/31a	3604.233	
HRN/32a	3730.236	
HRN/33a	3830.667	
HRN/33b	3871.542	
HRN/34a	3975.416	
HRN/35a	4089.457	
HRN/36a	4223.943	
HRN/37a	4312.496	
HRN/37b	4349.920	
HRN/38a	4433.335	

VEHICLE CROSS PASSAGES AND ELECTRICAL NICHES NOT INCLUDED IN SCHEDULE

<u>NOTES</u>

- . NICHE AND CROSS PASSAGE LOCATIONS BASED ON DRAWINGS DR/CB/PRO/C01/74039/03/0, THRU. 74042 INCLUSIVE.
- 2. DETAILS OF CUT AND COVER WORKS WITHIN SHAFT WA2 INDICATIVE ONLY.
- 3. DRAWING TO BE READ IN CONJUNCTION WITH DRAWINGS DR/HA/BT/C11/41050 AND 41051 DR/HA/BT/C11/41121 - 41130
- 4. ACTUAL LOCATION OF CROSS PASSAGE AND NICHES TO SUIT AS BUILT SEGMENT LAYOUT AND POSITION OF PEDESTRIAN CROSS PASSAGES ±0.85m
- 5. FIRE FIGHTING AND EMERGENCY CALL NICHES TO OFFSET FROM CROSS PASSAGES BY APPROXIMATELY 5 TO 7m FROM THE CENTRE LINE OF CROSS PASSAGES TO SUIT DESIGN AND CONSTRUCTION CONSIDERATIONS.
- 6. FFN NOT ADJACENT TO CROSS PASSAGE SHOULD BE LOCATED BETWEEN THOSE WHICH ARE ADJACENT TO MAINTAIN THE REQUIRED OF NO MORE THAN 150 METRES.
- 7. THE SPACING OF PCP IS A MAXIMUM OF 250 METRES.
- 8. ECN, FFN, HRN, AND PCP LOCATIONS ARE BASED ON ROAD ALIGNMENT
- 9. THE LEVELS & TUNNEL GRADES (SOUTHBOUND) USED IN THIS DRAWING FOR REVISION 12 HAVE BEEN BASED ON 137W ALIGNMENT.

13 - BM AS BUILT CHANGES ADDED


12	16.04.04	SRC	ECN, HRN AND FFN TABLES AMENDED FOR SOUTHBOUN
11	24.10.03	SRC	ISSUED FOR NMI REVIEW PCP TABLES AMENDED TO FCR 38379, ECN, FFN, HRN TABLES REVISED FFN/35b ADDED, LAYBYS RELOCATED
10	14.05.03	GEG	NICHES ADDED & REMOVED - PCP'S ALTERE
09	20.11.02	GEG	ISSUED FOR CONSTRUCTION
08	2.10.02	GEG	NICHE POSITIONS UPDATED
07	1.7.02	PRD	ISSUED FOR B&R APPROVAL. NMI COMMENTS INCORPORATED. MINOR AMENDMENTS.
06	31.5.02	GEG	ISSUED FOR NMI REVIEW
05	27.5.02	GEG	PCP/08 SOUTH BOUND CHAINAGE REVISED AND TUNNEL CHAINAGES ADDED
Mark Chd By	Date	Ву	Rev.

Haswell Consulting Engineers

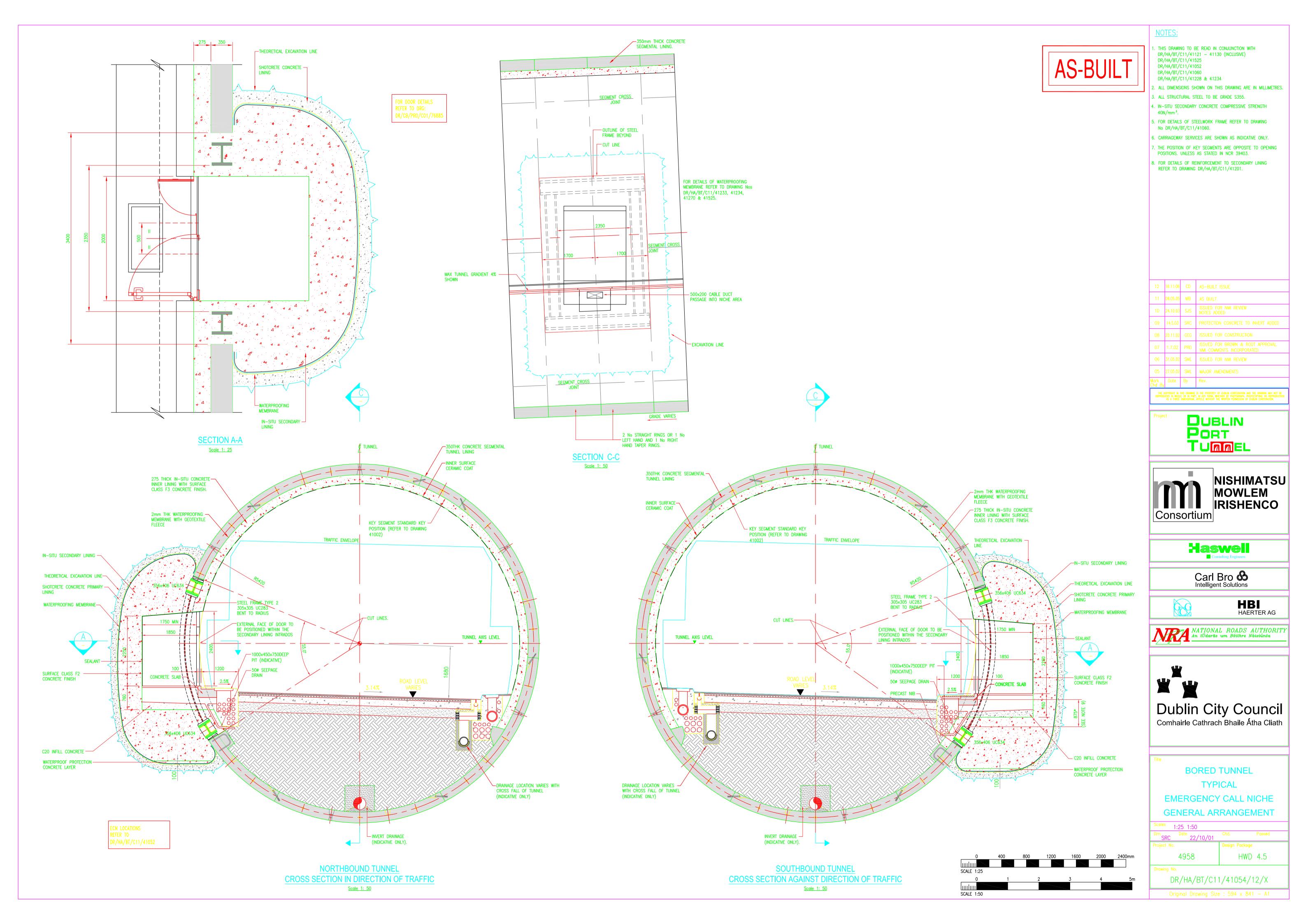
Carl Bro & Intelligent Solutions

HBI HAERTER AG

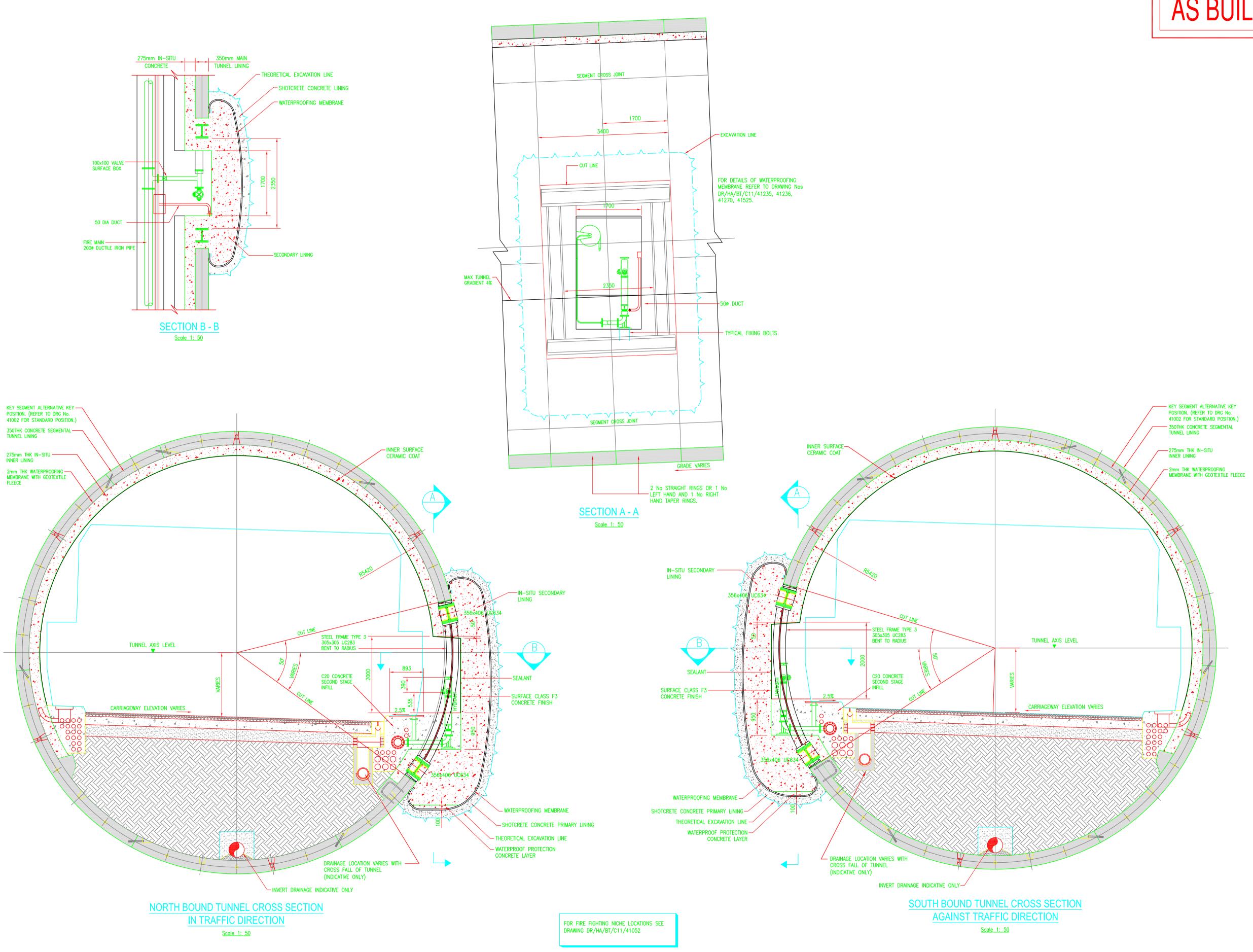
Dublin City Council Comhairle Cathrach Bhaile Átha Cliath

BORED TUNNEL THEORETICAL CHAINAGE SCHEDULE OF NICHE AND

CROSS PASSAGE LOCATIONS


Drn. RJY Date 27/9/01
Project No. HWD 4.5

Drawing No.


DR/HA/BT/C11/41052/13/X

Original Drawing Size : 594 x 841 - A1

- 1. THIS DRAWING TO BE READ IN CONJUNCTION WITH DR/HA/BT/C11/41121 41130 (INCLUSIVE) DR/HA/BT/C11/41525 DR/HA/BT/C11/41052
- DR/HA/BT/C11/41060 DR/HA/BT/C11/41230 & 41234
- 3. ALL STRUCTURAL STEEL TO BE GRADE S355. 4. IN-SITU SECONDARY CONCRETE COMPRESSIVE STRENGTH

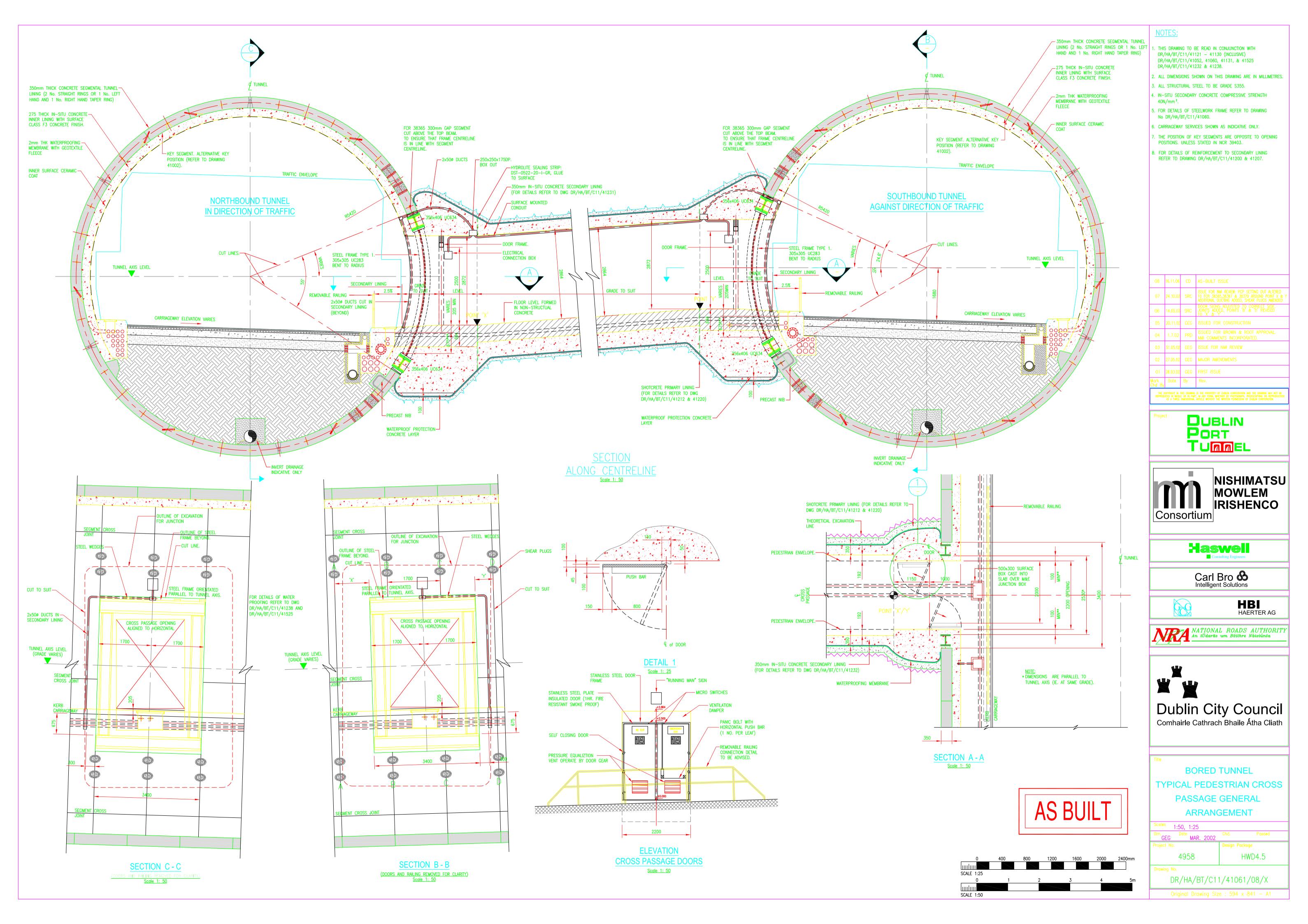
2. ALL DIMENSIONS SHOWN ON THIS DRAWING ARE IN MILLIMETRES.

- 40N/mm².
- 5. FOR DETAILS OF STEELWORK FRAME REFER TO DRAWING No DR/HA/BT/C11/41060. 6. CARRIAGEWAY SERVICES SHOWN AS INDICATIVE ONLY.
- 7. THE POSITION OF KEY SEGMENTS ARE OPPOSITE TO OPENING
- POSITIONS. UNLESS AS STATED IN NCR 39403. 8. FOR DETAILS OF REINFORCEMENT TO SECONDARY LINING

•		DR/HA/BT/C11/41202	

12	16.11.06	CD	AS-BUILT ISSUE
11	06.05.05	MB	AS BUILT
10	24.10.03	SJS	ISSUED FOR NMI REVIEW NOTES ADDED, DOOR DELETED
09	14.5.03	SRC	PROTECTION CONCRETE TO INVERT ADDED
08	20.11.02	GEG	ISSUED FOR CONSTRUCTION
07	1.7.02	PRD	ISSUED FOR BROWN & ROOT APPROVAL. NMI COMMENTS INCORPORATED.
06	31.05.02	SML	ISSUED FOR NMI REVIEW
05	27.05.02	SML	MAJOR AMENDMENTS
04	28.03.02	SML	MAJOR REVISIONS TO FRAME & NICHE
Mark Chd Bv	Date	Ву	Rev.

HBI HAERTER AG



Dublin City Council
Comhairle Cathrach Bhaile Átha Cliath

TYPICAL FIRE FIGHTING NICHE **GENERAL ARRANGEMENT**

BORED TUNNEL

n. SRC Date 01/10/01 HWD 4.5 4958 DR/HA/BT/C11/41056/12/X

APPENDIX C

PLAXIS 3D RESULTS

PLAXIS 3D FINITE ELEMENT MODEL RESULTS

TABLE OF FIGURES

Figure C-1: Change in Total Stress on Tunnel Crown (Northbound) HSS - increase is + ive	2
Figure C-2: Change in Total Stress on Tunnel Invert (Northbound) HSS - increase is + ive	2
Figure C-3: Change in Total Stress on Tunnel Crown (Southbound) HSS - increase is + ive	3
Figure C-4: Change in Total Stress on Tunnel Invert (Southbound) HSS - increase is + ive	3
Figure C-5: Vertical Displacements on Tunnel Crown (Northbound) HSS	4
Figure C-6: Vertical Displacements on Tunnel Crown (Southbound) HSS	4
Figure C-7: Horizontal Displacements on Tunnel Crown (Northbound) HSS	5
Figure C-8: Horizontal Displacements on Tunnel Crown (Southbound) HSS	5
Figure C-9: Horizontal Displacements on Tunnel Eastern Edge (Northbound) HSS	6
Figure C-10: Horizontal Displacements on Tunnel Western Edge (Northbound)) HSS	6
Figure C-11: Horizontal Displacements on Tunnel Eastern Edge (Southbound) HSS	7
Figure C-12: Horizontal Displacements on Tunnel Western Edge (Southbound) HSS	7
Figure C-13: Axial Force along DPTs (N1 i.e. Longitudinal Force) NB HSS	
Figure C-14: Axial Force along DPTs (N2 i.e. Hoop Force) NB HSS	
Figure C-15: Bending Moment along DPTs (M11 i.e. Longitudinally along tunnel) NB HSS	
Figure C-16: Bending Moment along DPTs (M22 i.e. transversely across tunnel) SB HSS	
Figure C-17: Shear Force along DPTs (Q23 i.e. Transversely across tunnel) SB HSS	
Figure C-18: Shear Force along DPTs (Q13 i.e. Longitudinally along tunnel) SB HSS	. 10

Abbreviations

- **SB** = Southbound Tunnel
- **NB** = Northbound Tunnel

19-196-R05 Page C-1

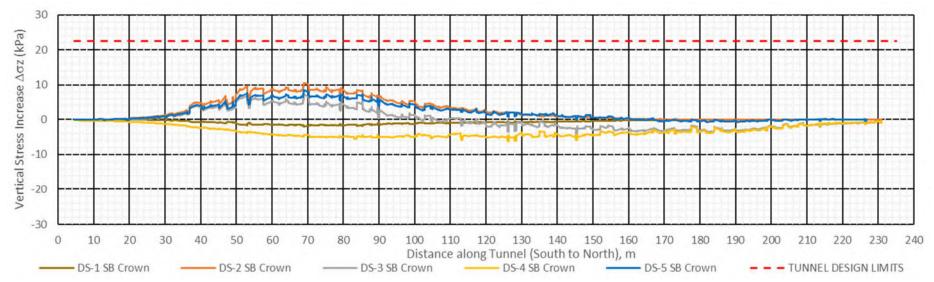


Figure C-1: Change in Total Stress on Tunnel Crown (Northbound) HSS - increase is + ive

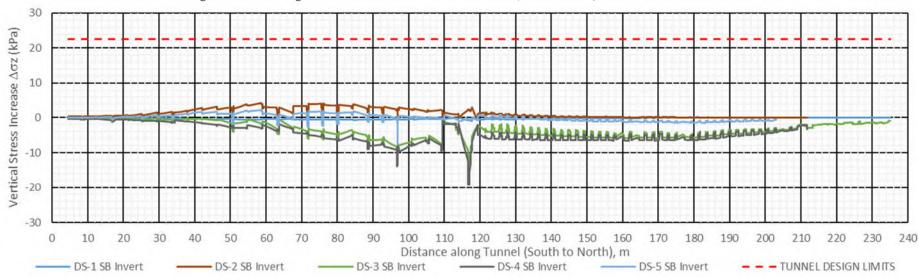


Figure C-2: Change in Total Stress on Tunnel Invert (Northbound) HSS - increase is + ive

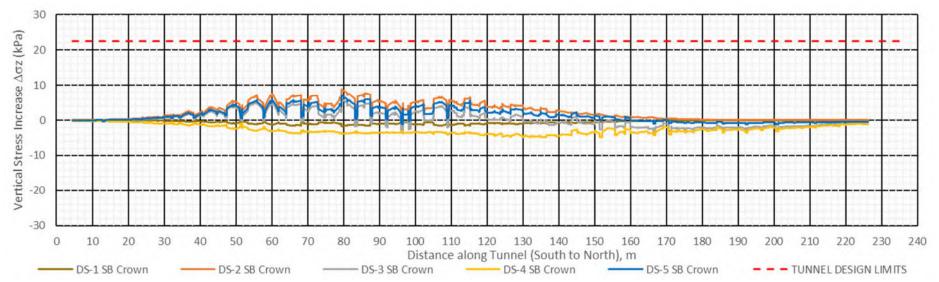


Figure C-3: Change in Total Stress on Tunnel Crown (Southbound) HSS - increase is + ive

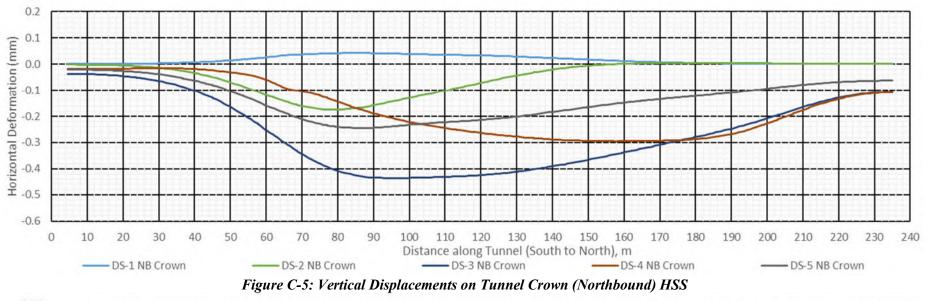



Figure C-4: Change in Total Stress on Tunnel Invert (Southbound) HSS - increase is + ive

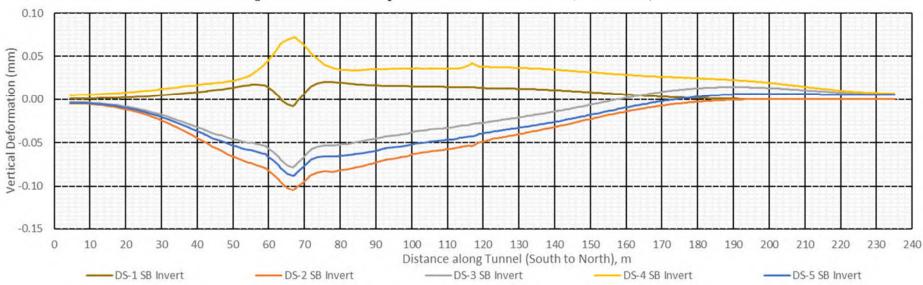
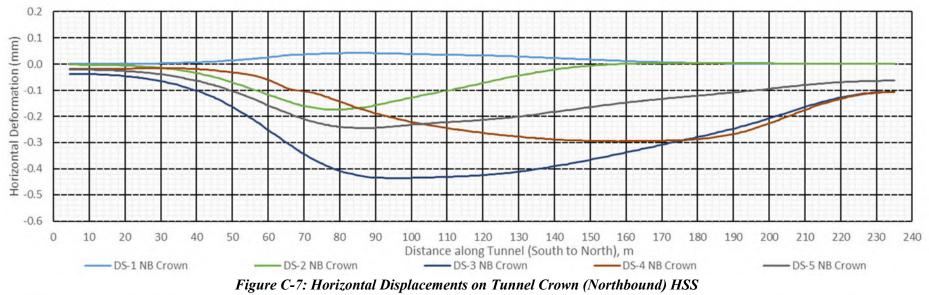



Figure C-6: Vertical Displacements on Tunnel Crown (Southbound) HSS

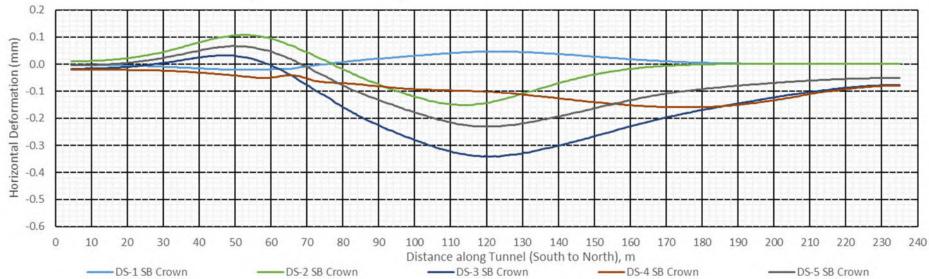


Figure C-8: Horizontal Displacements on Tunnel Crown (Southbound) HSS

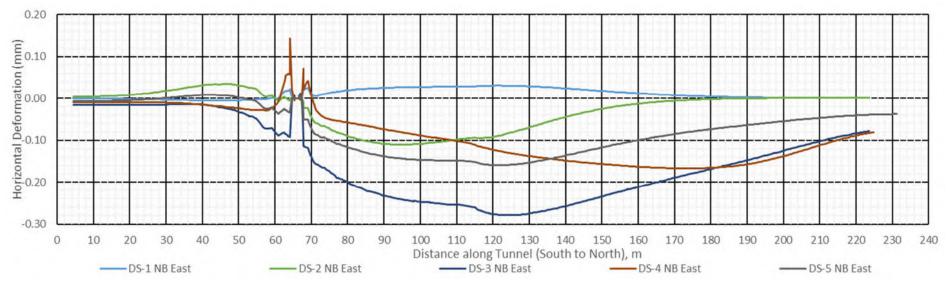


Figure C-9: Horizontal Displacements on Tunnel Eastern Edge (Northbound) HSS

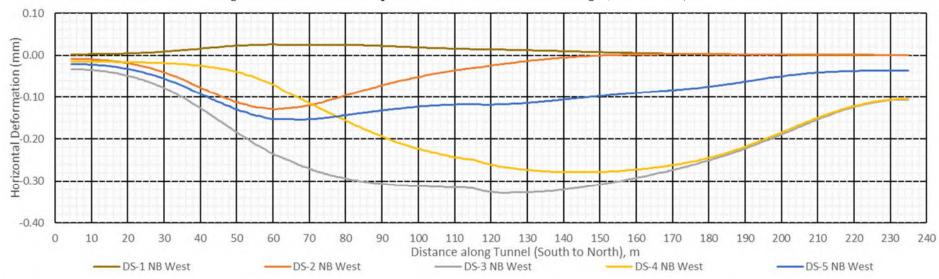


Figure C-10: Horizontal Displacements on Tunnel Western Edge (Northbound)) HSS

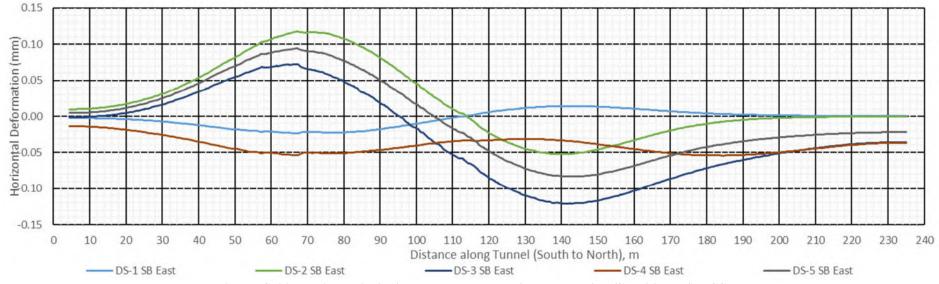


Figure C-11: Horizontal Displacements on Tunnel Eastern Edge (Southbound) HSS

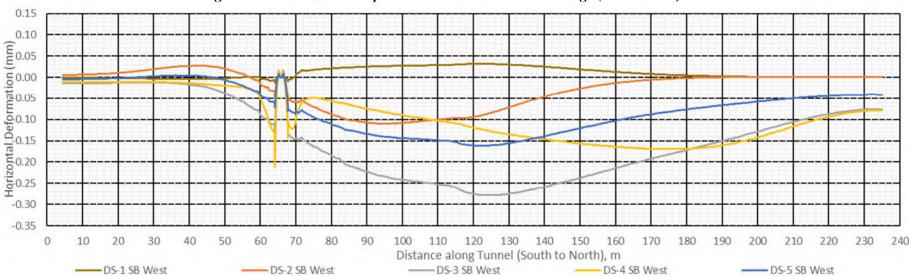


Figure C-12: Horizontal Displacements on Tunnel Western Edge (Southbound) HSS

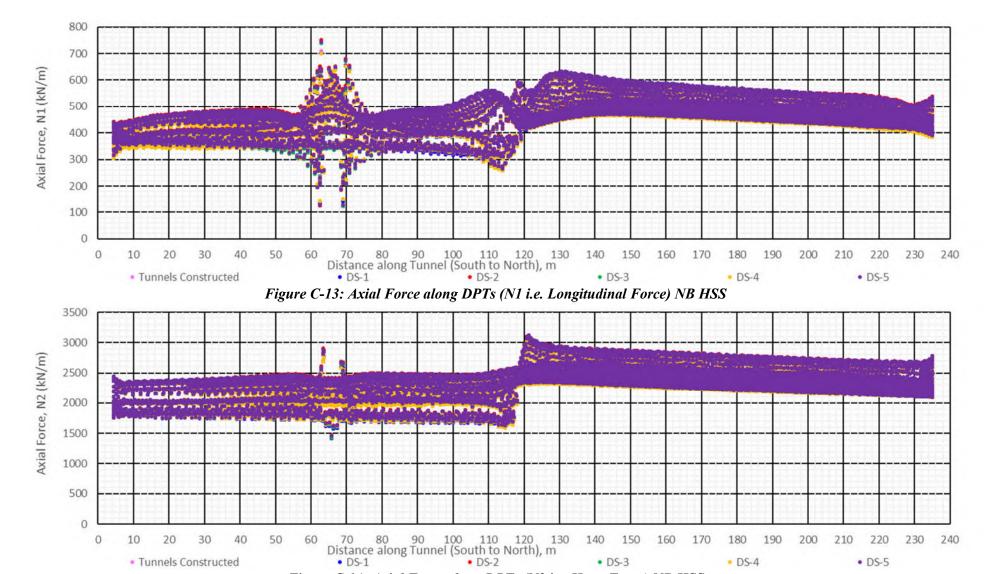
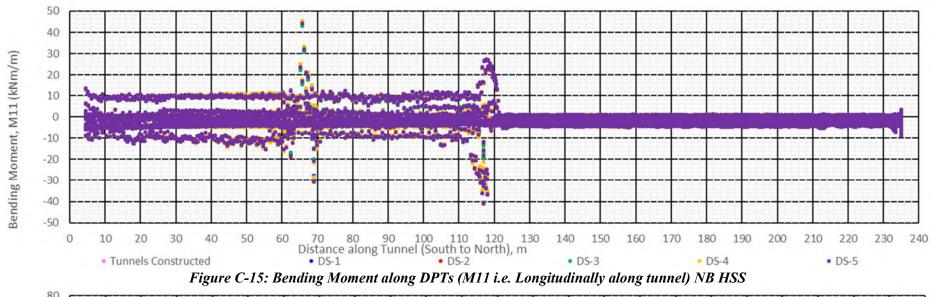
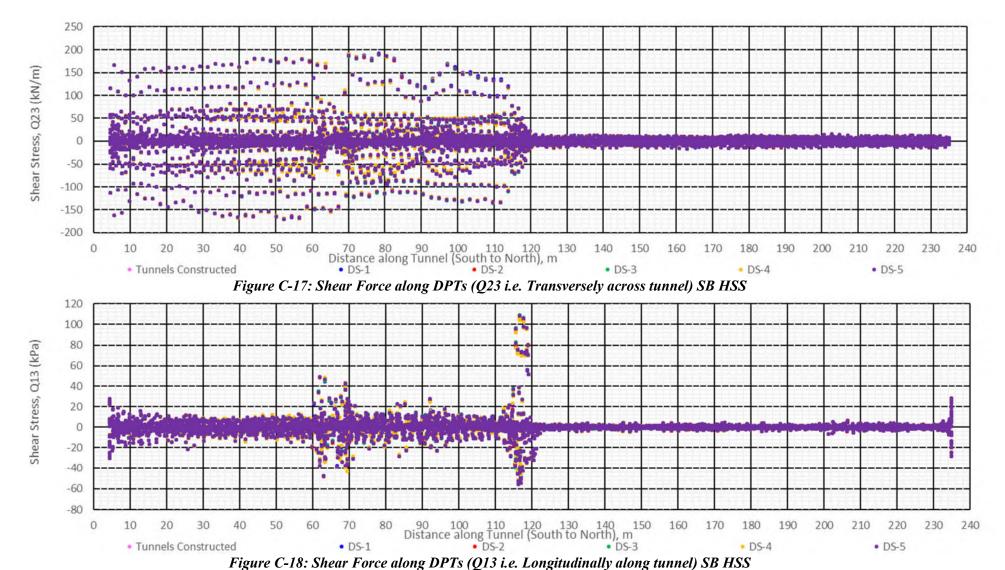
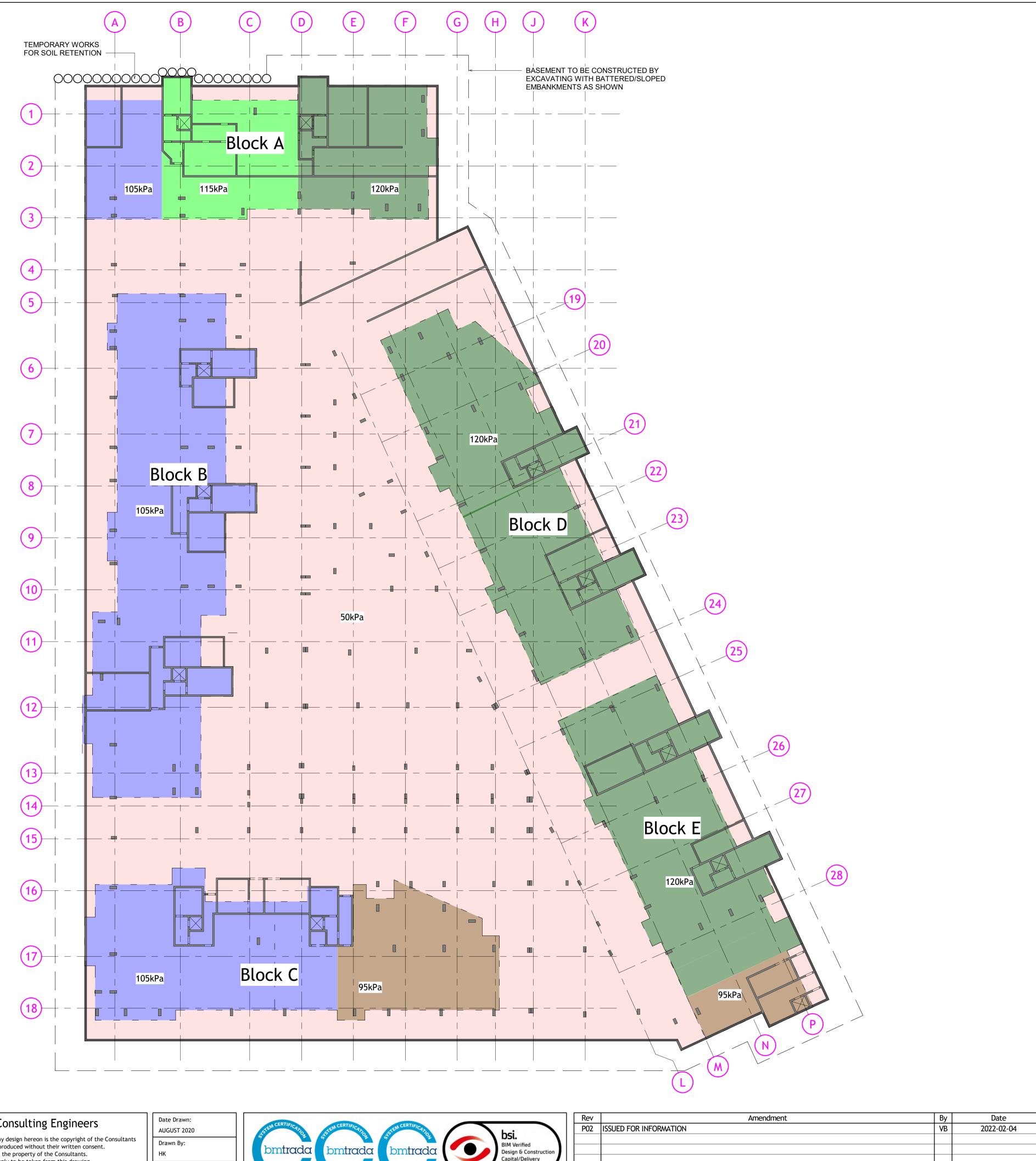




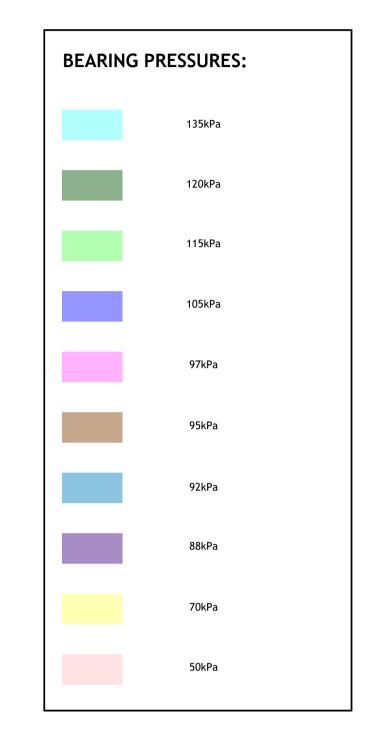
Figure C-14: Axial Force along DPTs (N2 i.e. Hoop Force) NB HSS

80 60 Bending Moment, M22 (kNm/m) -20 -80 -100 70 80 90 100 110 120 130 Distance along Tunnel (South to North), m 10 20 30 40 50 60 140 150 160 170 180 190 200 210 220 0 230 240 Tunnels Constructed • DS-3 DS-4 • DS-5 • DS-1 DS-2

Figure C-16: Bending Moment along DPTs (M22 i.e. transversely across tunnel) SB HSS


19-196-R05 Page C-10

APPENDIX D


NOT USED

APPENDIX E

PUNCH CONSULTING CHARACTERISTIC BEARING PRESSURES BELOW BUILDINGS & BASEMENT

BASEMENT WALLS CONSTRUCTION: - BASEMENT PERIMETER WALL 300mm RC - BASEMENT INTERNAL WALL 250mm RC

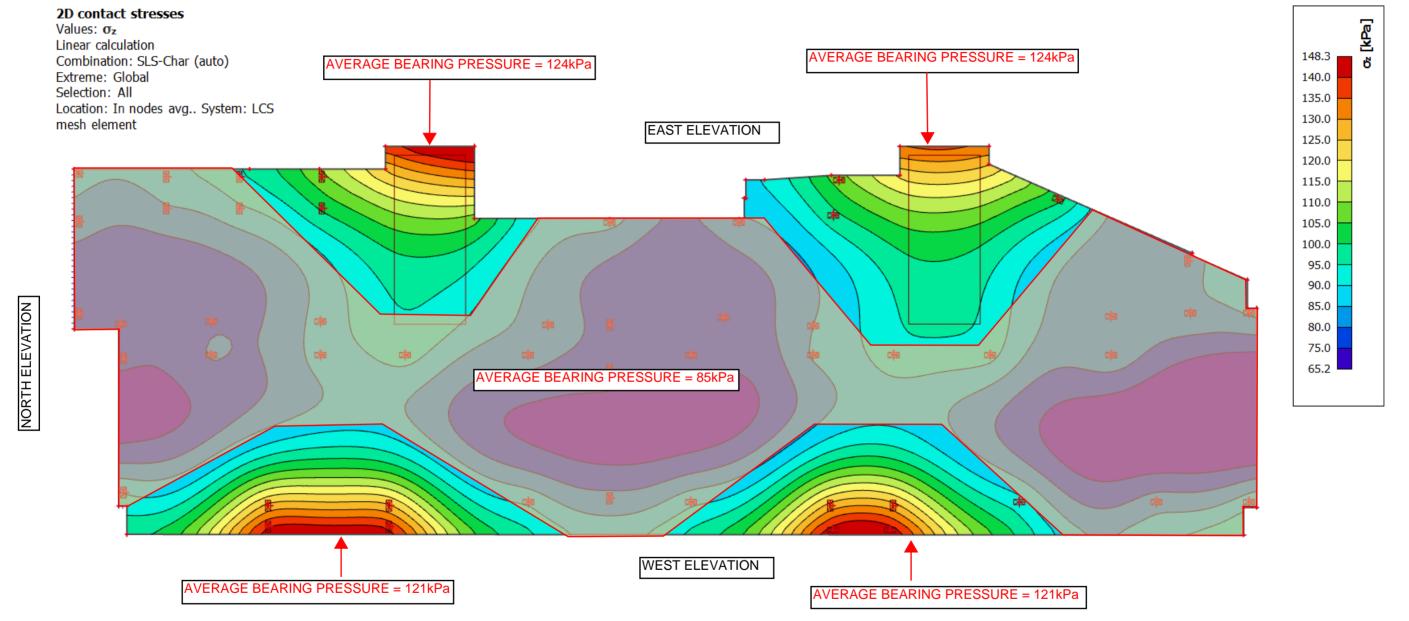
GENERAL NOTES REFERENCE
Scale 1:50

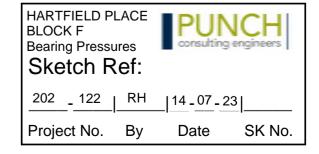
© PUNCH Consulting Engineers

work proceeds.

This drawing and any design hereon is the copyright of the Consultants and must not be reproduced without their written consent. All drawings remain the property of the Consultants.
Figured dimension only to be taken from this drawing. Consultants to be informed immediately of any discrepancies before

Colour Drawing:


Rev	Amendment	Ву	Date
P02	ISSUED FOR INFORMATION	VB	2022-02-04


Client:


EASTWISE

Technician Check: HK Engineer Check: DG Document No:

APPENDIX F

PLAXIS 3D RESULTS – CONSTRUCTION SEQUENCE

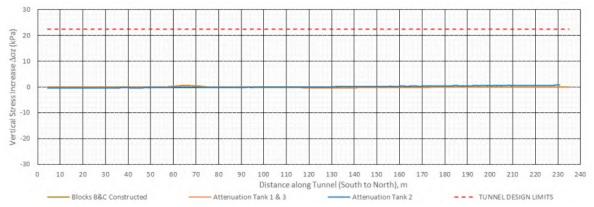


Figure F-1: Change in Total Stress on Tunnel Crown (Northbound) MC - increase is + ive: Blocks B&C (load applied), Attenuation tanks 1, 2, 3

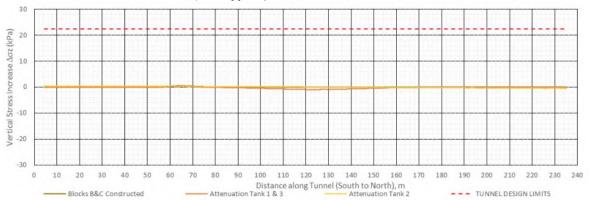


Figure F-2: Change in Total Stress on Tunnel Crown (Southbound) MC - increase is + ive: Blocks B&C (load applied), Attenuation tanks 1, 2, 3

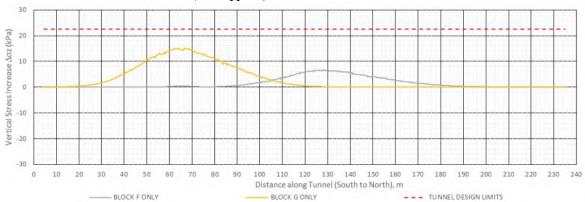


Figure F-3: Change in Total Stress on Tunnel Crown (Northbound) MC - increase is + ive: Blocks F & G

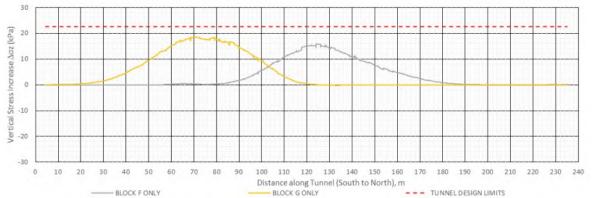


Figure F-4: Change in Total Stress on Tunnel Crown (Southbound) MC - increase is + ive: Blocks F & G

19-196-R05 Page F-1

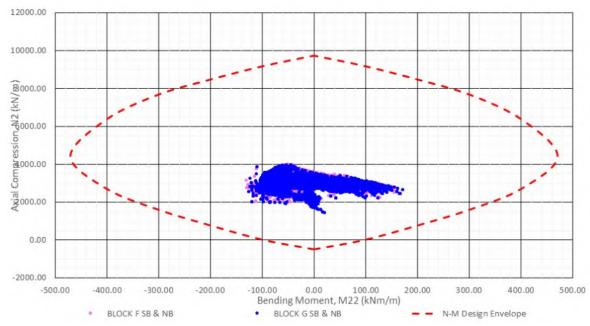


Figure F-5: Design N-M Interaction Chart for tunnel lining along transverse direction with Plaxis 3D results plotted - MC NB&SB: Blocks F & G



Figure F-6: Design N-M Interaction Chart for tunnel lining along longitudinal direction with Plaxis 3D results plotted -MC NB&SB: Blocks F & G

19-196-R05 Page F-2

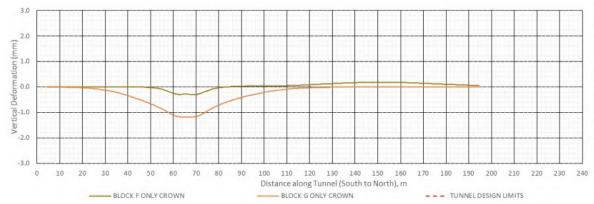


Figure F-7: Vertical Displacements on Tunnel Crown (Northbound) MC: Blocks F & G

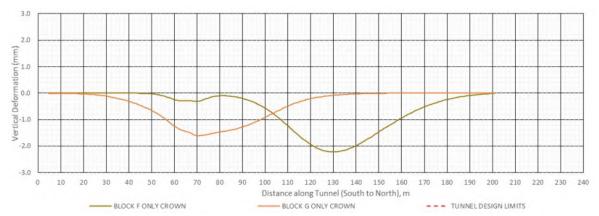


Figure F-8: Vertical Displacements on Tunnel Crown (Southbound) MC: Blocks F & G

19-196-R05 Page F-3

APPENDIX G

GII 2010 GROUND INVESTIGATION REPORT

REPORT ON SITE INVESTIGATION

AT

SWORDS ROAD

WHITEHALL

DUBLIN 9

Prepared by: EurGeol Fergal Mc Namara P.Geo.

Signed: Date: 10th May, 2010.

File No: 2442-02-10

Contents

- 1.0 Preamble
- 2.0 Overview
 - 2.1 Background
 - 2.2 Purpose and Scope
- 3.0 Subsurface Exploration
 - 3.1 General

Appendix 1 Borehole Records

Appendix 2 Rock Core Photographs

Appendix 3 Site Plan

1.0 Preamble

On the instructions of Colm Doyle of DBFL Consulting Engineers, a site investigation consisting of four no. rotary cored boreholes was carried out between 6th April and the 19th April 2010 on the above site.

2.0 Overview

2.1 Background

It is proposed to construct a new multi storey apartment development on the site.

2.2 Purpose and Scope

The purpose of the site investigation was to determine the depth to bedrock at the chosen locations and the nature and quality of the rock by means of rotary coring. The scope of the work undertaken for this study included the following:

- Visit project site to observe existing conditions
- Carrying out of the subsurface exploration programme consisting of 4 no.
 rotary cored boreholes.
- Detailed logs as per specification

3.0 <u>Subsurface Exploration</u>

3.1 General

Four number 100mm diameter rotary cored boreholes were proposed in positions designed to give a rock profile over the site in the vicinity of the port tunnel.

Competent Bedrock was encountered at 25.50mBGL at the location of RC1,

22.00mBGL at the location of RC2, 21.00mBGL at the location of RC3 and

26.30mBGL at the location of RC4. The bedrock generally consisted of strong dark grey medium grained LIMESTONE with minor black calcareous MUDSTONE.

Recovery was generally 75% to 95% and the rock was slightly to moderately weathered. Poor recovery was encountered in RC2 of 15% due to weaker black calcareous mudstone in this area being washed away. Rotary cored borehole logs from the Dublin Port Tunnel site investigation were supplied to GII by the engineer for comparison. The nearest borehole to RC1 and RC4 is rotary cored borehole 262 which notes competent LIMESTONE bedrock at 26.00mBGL. Bedrock consists of

LIMESTONES with minor calcareous mudstone, this is consistent with the findings in this report from RC1 and RC4. The nearest boreholes to RC2 and RC3 are rotary cored boreholes 211 and 507 which note competent LIMESTONE bedrock at 20.00mBGL and 24.17mBGL respectively consisting of LIMESTONES with minor calcareous mudstones. This is consistent with the findings in this report from RC2 and RC3.

The locations of the exploratory holes are shown on the accompanying site plan.

Detailed logs of the boreholes can be found at the rear of this report.

BOF	REHO	LE	REC	CORD (Ro	otar	ry core)						
Project Name: Swords Ro		Hole ID: RC1										
Client:			Co	o-ordinates:	-							
Consultant: DBFL					Ele	evation:	-				_	
Location: Whitehall, Dublin		d-4	11/0/	1/0040		•	2442-02-1					
Start date: 12/04/2010				1/2010		•	T. Collins					
Type of drilling: RC			eter:			ogged by:	N. Sneen	an_				S
Strata Description	Legend	Depth	Level mAOD	D)ISC	ontinuities		FSI	RQD	SCR	TCR	CORE RUN
OVERBURDEN - driller notes boulder clay with sand seams												
Continued next sheet												
Remarks:	h			KEY		Total Core Possyery			GR	OU	ND	
Rotary openhole borehole to 23.10mBGL then hole continued Driller notes that between 30.00 and 31.00mBGL, 0.60m of continued the state of the state	d by rotary cor ore was lost d	ing techni ownhole f	ques. rom the co	SCR	S R Fi	Total Core Recovery. Solid Core Recovery Rock Quality Designation Fracture Spacing Index			IRE	A	ONS D	

BOF	REHO	LE	REC	CORD (R	O	otary core)						
Project Name: Swords Ro	roject Name: Swords Road								1			
Client:						Co-ordinates:	-					
Consultant: DBFL						Elevation:	-				_	
Location: Whitehall, Dublin	-	.1 . 4	44/0	1/0040		Project no.	2442-02-					
Start date: 12/04/2010				1/2010		Drilled by:	T. Collins					
Type of drilling: RC			eter:			Logged by:		an_				z
Strata Description	Legend	Depth	Level		Эi	iscontinuities		FSI	RQD	SCR	TCR	CORE RUN
OVERBURDEN - driller notes boulder clay with sand seams			-111 -12 -13 -14 -15 -16 -17)
			[-
Continued next sheet			-									-
Remarks:	PANANA		1	KEY	Y	Title 5			GR	OU	ND	
Rotary openhole borehole to 23.10mBGL then hole continued Driller notes that between 30.00 and 31.00mBGL, 0.60m of co	ore barrel. TCR SCR RQD FSI		Total Core Recovery. Solid Core Recovery. Rock Quality Designation Fracture Spacing Index	·		IRE	A	IONS ND				

BOF	REHO	LE	REC	CORD (Ro	otary core)					
Project Name: Swords Roa	ad				Hole ID:	RC	1			
Client:					Co-ordinates: -					
Consultant: DBFL					Elevation: -					
Location: Whitehall, Dublin					Project no. 2442-02	-10			_	
Start date: 12/04/2010	End	date:	14/04	/2010	Drilled by: T. Collin	s				
Type of drilling: RC	1	diam	eter:	63 mm	Logged by: N. Shee	han_				
Strata Description	Legend	£	el OD	D	iscontinuities					RUN
•	Leg	Depth	Level mAOD			FSI	RQD	SCR	TCR	CORE
OVERBURDEN - driller notes	*****					+				U -
boulder clay with sand seams			-]
			-							1
			- - - 21							-
3			-							
			-							-
			-							
			- - 22							_
			-							
			-							-
			-							
Danis and a faith dad	XXXX	23.10	- 23				0	0	78	23.10 -
Recovery consists of stiff dark grey black sandy gravelly CLAY			-				"		70	23.10
with cobbles and boulders	×0000		-							-
1	\$50.00 \$20.00 \$20.000		- - - 24							
			-							-
			-							-
			-				0	0	61	24.60 -
	X-070	25.10	- 25 							_
Band of grey brown fine SAND		20.10	-							-
Strong dark grey LIMESTONE		25.50	-	Mostly Non-	Intact	+				-
with interbanding layers of			-	Woody Hon	maot	N.I				-
calcareous mudstone, calcite veining present, fresh to slightly			- 26 -	Cua atuus a ua	an and from an adjust to		47	56	77	26.10 -
weathered	+++		-	closely spa	inge from medium to ced, sub-horizontal to					
			-	20degrees,	planar, rough to smooth,					-
			_ - 27	tignt to oper	n and clay coated	8				-
			-							
	TIT		-							
			-				38	38	95	27.60 -
			– 28 -	Mostly Non-	Intact		.			-
			-	WOStry NOTE	maot	N.I				
			-	- ,		+	67	88	100	28.60 -
			- - - 29		inge from medium to ced, 30degrees, planar,					-
			-	rough to sm	ooth, tight to open and clay					
			-	coated						
			-			10				
Continued next sheet			ŀ	KEY		+		Ш		H
Remarks: Rotary openhole borehole to 23.10mBGL then hole continued	by rotary co	ring techni	iaues	TCR SCR	Total Core Recovery. Solid Core Recovery		GR	OU	ND IONS	
Driller notes that between 30.00 and 31.00mBGL, 0.60m of co				re barrel. RQD FSI	Rock Quality Designation Fracture Spacing Index		IKE	A	AD	
								41		

BOR	EHO	LE	REC	CORD	(Ro	tary core)						
Project Name: Swords Roa			Н	ole ID: F	RC	1						
Client:						Co-ordinates:	-					
Consultant: DBFL						Elevation:	-					
Location: Whitehall, Dublin					+	Project no.	2442-02-	10			_	
Start date: 12/04/2010	End	date:	14/04	1/2010		Drilled by:	T. Collins					
Type of drilling: RC		diam	eter:	63	mm	Logged by:	N. Sheeh	an_				_
Strata Description	Legend	£	_ 2		Di	scontinuities						RUN
Chara Becomplion	ege.	Depth	Level		ال			FS	RQD	SCR	TCR	CORE
Of LINESTONE								ш	30	40		30.00 -
Strong dark grey LIMESTONE with interbanding layers of calcareous mudstone, calcite			-						30	40	43	30.00
veining present, fresh to slightly weathered			- - -									-
End of Borehole Log at 31.00 m		31.00	- 31 -									
			-									-
			- 32 -									-
			-									-
			- - 33 -									-
												-
			- - - 34									-
			- - -									-
			- - 35									-
			-									
			- - - 36									-
			-									
			- 37									-
			- - -									-
			- - - 38									-
			-									-
			- - - 39									-
			- - -									1
			- - -		I/E\							
Remarks: Rotary openhole borehole to 23.10mBGL then hole continued I Driller notes that between 30.00 and 31.00mBGL, 0.60m of continued I Driller notes that between 30.00 and 31.00mBGL, 0.60m of continued I Driller notes that between 30.00 and 31.00mBGL, 0.60m of continued I Driller notes that between 30.00 and 31.00mBGL, 0.60m of continued I Driller notes that between 30.00 and 31.00mBGL and 31.00mBGL.	by rotary cor re was lost d	ing techni ownhole t	iques. from the co	ore barrel.	KEY TCR SCR RQD FSI	Total Core Recovery. Solid Core Recovery Rock Quality Designation Fracture Spacing Index			GR INVES IRE	OUI LAI A	ND ONS ND	

BOI	REHO	LE	REC	CORD (Ro	otary core)						
Project Name: Swords Ro	ad				Н	ole ID: F	RC	2	_		
Client: Consultant: DBFL Location: Whitehall, Dublin Start date: 06/04/2010 Type of drilling: RC	End			1/2010 63 mm	Co-ordinates: Elevation: Project no. Drilled by: Logged by:	2442-02-7 T. Collins				_	
Strata Description	Legend	Depth	Level mAOD		iscontinuities	IV. OHEEH	FSI	RQD	SCR	TCR	CORE RUN
OVERBURDEN - driller notes boulder clay with boulders and sand bands Continued next sheet	7		-1 -1 -2 -3 				4				χ
Remarks: Rotary openhole borehole to 22.00mBGL then hole continue	d by rotary cori	ng techni	iques.	KEY TCR SCR RQD FSI	Total Core Recovery. Solid Core Recovery Rock Quality Designation Fracture Spacing Index			GR INVE	OU HEAT LAI	ND ONS ND	

ВО	REHO	LE	REC	CORD (Ro	otary core)						
Project Name: Swords Ro	oad		H	ole ID: F	RC	2					
Client: Consultant: DBFL Location: Whitehall, Dublin Start date: 06/04/2010 Type of drilling: RC			12/04 neter:	1/2010 63 mm	Co-ordinates: Elevation: Project no. Drilled by: Logged by:	- - 2442-02- T. Collins N. Sheeh				_	
Strata Description	Legend	Depth	Level mAOD		iscontinuities		FSI	RQD	SCR	TCR	CORE RUN
OVERBURDEN - driller notes boulder clay with boulders and sand bands Continued next sheet			-11 -12 -13 -14 -15 -16 -17								<u>S</u>
Continued next sheet	*****		}	KEY							
Remarks: Rotary openhole borehole to 22.00mBGL then hole continue	ed by rotary cori	TCE I TCR SCR RQD FSI	Total Core Recovery. Solid Core Recovery Rock Quality Designation Fracture Spacing Index			GR INVE	OU IICAI A	ND IONS ND			

BOR	REHO	LE	REC	ORD (Ro	tary core)					
Project Name: Swords Roa	ad			Hole ID: RC2						
Client:			Co-ordinates: -							
Consultant: DBFL					Elevation: -				_	
Location: Whitehall, Dublin		doto	10/04	/2010	Project no. 2442-02-					
Start date: 06/04/2010					Drilled by: T. Collins					
Type of drilling: RC	HOIE		eter:		Logged by: N. Sheel	nan				RUN
Strata Description	Legend	Depth	Level	Di	iscontinuities	_	Q	ιχ	8	KE R
	Le	۵	a E			FSI	RQD	SCR	TCR	CORE
OVERBURDEN - driller notes boulder clay with boulders and sand bands Weak to medium strong dark grey		22.00	- 22	Insufficient r	accovery to determine		10	30	65	22.00 -
decomposed LIMESTONE driller notes black mudstone bands which washed away during coring process, calcite veining present and moderately weathered			- 23	fracture patte core	ecovery to determine ern due to washed away		8	10	15	23.10 -
			- 24 							
			- 25 							
			- 26 			N.I				-
			- 27							
			28 28 							
Continued next sheet										-
Remarks: Rotary openhole borehole to 22.00mBGL then hole continued	by rotary cor	KEY TCR SCR RQD FSI	Total Core Recovery. Solid Core Recovery Rock Quality Designation Fracture Spacing Index		GR INVE	OU LA A	ND IONS ND			

BOR	EHO	LE	REC	CORD	(Ro	tary core)						
Project Name: Swords Roa		Co-ordinates:	lole ID: F	RC	2							
Client:												
Consultant: DBFL Location: Whitehall, Dublin					_	Elevation: Project no.	2442-02-	10			_	
Start date: 06/04/2010	End	date:	12/04	1/2010		Drilled by:	T. Collins					
Type of drilling: RC	Hole	diam	eter:	63	mm		N. Sheeh	an		1		_
Strata Description	Legend	Depth	Level		Di	iscontinuities		FSI	RQD	SCR	TCR	CORE RUN
Weak to medium strong dark grey decomposed LIMESTONE driller notes black mudstone bands which washed away during coring process, calcite veining present and moderately weathered End of Borehole Log at 31.00 m		31.00	-					32	RC RC)8	77	00
			- - - -									
Demonstra			-		KEY							_
Remarks: Rotary openhole borehole to 22.00mBGL then hole continued to	oy rotary cor	ing techni	iques.		TCR SCR RQD FSI	Total Core Recovery. Solid Core Recovery Rock Quality Designation Fracture Spacing Index			GR INVES IRE	OUI A A	ND ONS ND	

ВОГ	REHO	LE	REC	ORD (Ro	otary core)			_			
Project Name: Swords Ro	ad			H Co-ordinates:	ole ID: F	RC	3				
Client: Consultant: DBFL Location: Whitehall, Dublin Start date: 15/04/2010 Type of drilling: RC	Hole		19/04 neter:	./2010 63 mm	Elevation: Project no. Drilled by: Logged by:	- - 2442-02- T. Collins N. Sheeh				_	
Strata Description	Legend	Depth	Level mAOD		iscontinuities		FSI	RQD	SCR	TCR	CORE RUN
OVERBURDEN - driller notes boulder clay with sand seams											Š
Continued next sheet			-	KEY							_
Remarks: Rotary openhole borehole to 21.00mBGL then hole continue	d by rotary cori	ing techn	iques.	TCR SCR RQD FSI	Total Core Recovery. Solid Core Recovery Rock Quality Designation Fracture Spacing Index			GR INVE	OUI TICATI LAI	ND IONS ND	

ВО	REHO	LE	REC	ORD (Ro	tary core)						
Project Name: Swords Ro	oad		H	ole ID: F	RС	3					
Client: Consultant: DBFL Location: Whitehall, Dublin Start date: 15/04/2010 Type of drilling: RC			19/04 neter:	:/2010 63 mm	Co-ordinates: Elevation: Project no. Drilled by: Logged by:	- - 2442-02- T. Collins N. Sheeh				_	
Strata Description	Legend	Depth	Level mAOD		iscontinuities		FSI	RQD	SCR	TCR	CORE RUN
OVERBURDEN - driller notes boulder clay with sand seams Continued next sheet			-111 -12 -13 -14 -15 -16								
Continued next sheet	*****		ŀ	KEY							
Remarks: Rotary openhole borehole to 21.00mBGL then hole continu	ed by rotary cor	TCR SCR RQD FSI	Total Core Recovery. Solid Core Recovery Rock Quality Designation Fracture Spacing Index			GR INVE	IIGAI A	ND IONS ND			

BOR	EHO	LE	REC	ORD (Ro	tary core)					
Project Name: Swords Roa	ad				Co-ordinates:	e ID: RC	3	_		
Client: Consultant: DBFL Location: Whitehall, Dublin Start date: 15/04/2010 Type of drilling: RC			19/04 neter:	./2010 63 mm	Elevation: - Project no. 24 Drilled by: T	442-02-10 . Collins . Sheehan			_	
Strata Description	Legend	Depth	Level		scontinuities	FSI	RQD	SCR	TCR	CORE RUN
OVERBURDEN - driller notes boulder clay with sand seams			- - - - - -							<u>C</u>
Medium strong to strong dark grey LIMESTONE with interbanding layers of black calcareous mudstone, calcite veining present, fresh to slightly weathered		21.00	-21	closely space tight to open	nge from close to very ed, 20degrees, smoot and clay coated. No 4.20 to 24.60mBGL	th,	39	67	81	21.00 -
			- 24				16	27	73	23.10 -
Strong to very strong dark grey LIMESTONE, calcite veining present, fresh to slightly weathered		24.60	- 25 - 25 	closely space	nge from medium to ed, sub-horizontal to undulating, rough to t to open		58	69	81	24.60 -
			- 27			9	57	69	85	26.10
			- 28 28 				36	78	85	27.60 -
Continued next sheet			- 29		nge from very close to osely spaced,	0	29	29	49	29.10 -
Remarks: Rotary openhole borehole to 21.00mBGL then hole continued	KEY TCR SCR RQD FSI	Total Core Recovery. Solid Core Recovery Rock Quality Designation Fracture Spacing Index		GR INVE		ND IONS ND				

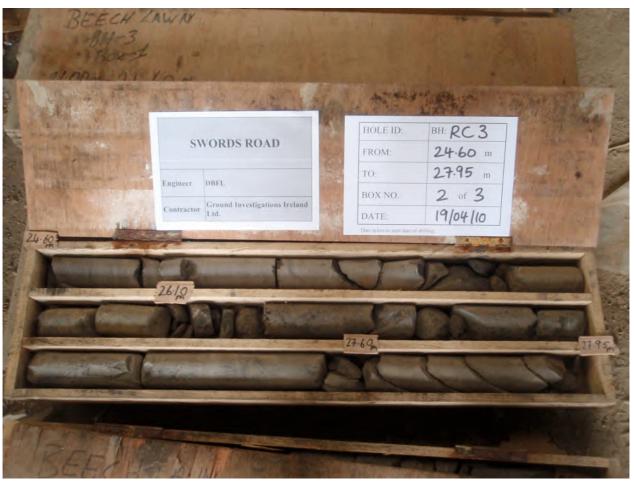
BOR	REHC	LE	REC	ORD (Ro	tary core)							
Project Name: Swords Roa	ad				Hole ID: RC3							
Client:					Co-ordinates:	-						
Consultant: DBFL					Elevation:	-						
Location: Whitehall, Dublin					Project no.	2442-02-	10			_		
Start date: 15/04/2010	End	date:	19/04	1/2010	Drilled by:	T. Collins						
Type of drilling: RC		diam	eter:	63 mm	Logged by:	N. Sheeh	an				7	
Strata Description	Legend	£		Di	iscontinuities						CORE RUN	
'	Leg	Depth	Level				FSI	RQD	SCR	TCR	ORE	
Strong to very strong dark grey					al, undulating, roug	sh to	20		-	-	Ö	
LIMESTONE, calcite veining			-	smooth, tigh	t to open	jii to					1	
present, fresh to slightly weathered		30.60	-									
End of Borehole Log at 30.60 m	- "		-								1	
End of Boronoic Eng at 60.00 m			- 31 -								1	
			-									
			-								1	
			- 32								-	
			-								1	
			-								1	
			-								1	
			- 33 -								-	
			-								1	
			-								-	
			-									
			- 34 -								1	
			-								1	
			-									
			- - 35]	
											1	
			-								1	
			-								1	
			- 36 								-	
			-								1	
			-								-	
			-								1	
			- 37 -								1	
			-								1	
			-								1	
			- - 38								1	
			-								1	
			-								-	
			-								1	
			- 39 								-	
			-								-	
			- -								-	
			[-	
Remarks:	i			KEY	T-t-LC: D: -			GR	OU	ND		
Rotary openhole borehole to 21.00mBGL then hole continued	by rotary co	ring techn	iques.	TCR SCR RQD	Total Core Recovery. Solid Core Recovery Rock Quality Designation			IRE	LA	ND		
				FSI	Fracture Spacing Index				A			

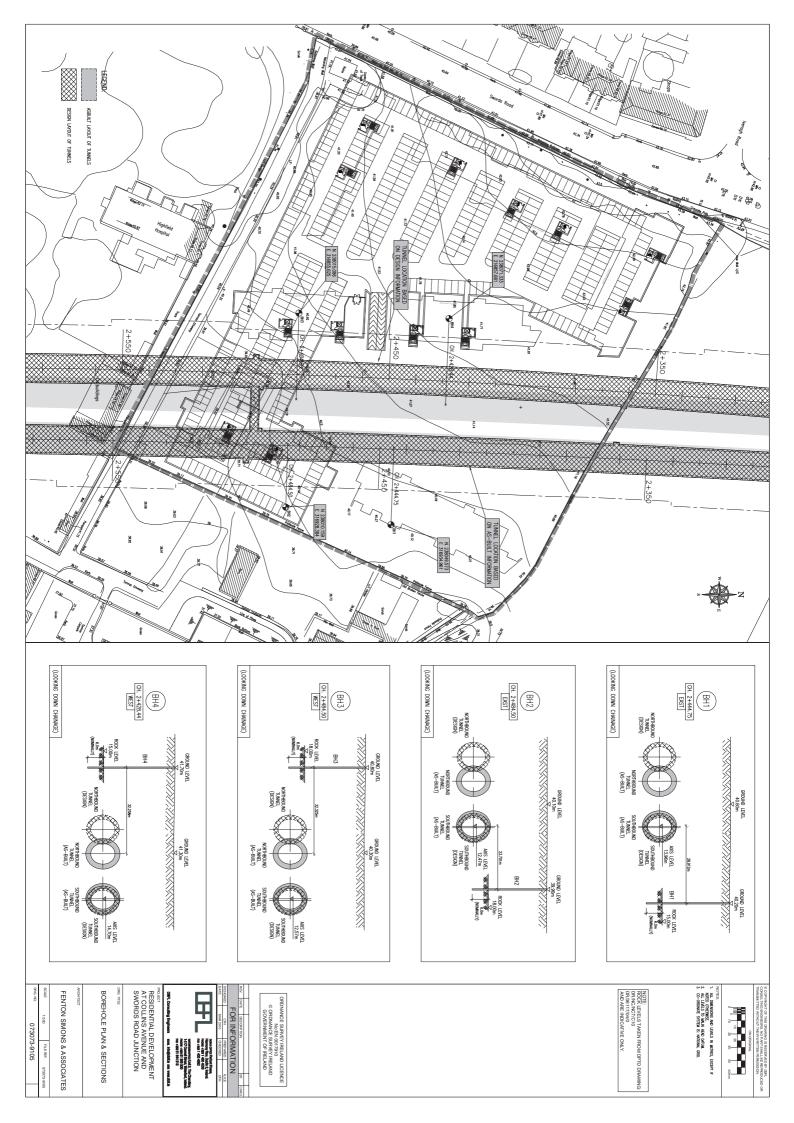
BOREHOLE RECORD (Rotary core)											
Project Name: Swords R	oad				H	ole ID: F	₹C	4			
Client: Consultant: DBFL Location: Whitehall, Dublin Start date: 14/04/2010 Type of drilling: RC	End date: 15/04/2010 Hole diameter: 63				Co-ordinates: Elevation: Project no. Drilled by: Logged by:	- - 2442-02- T. Collins N. Sheeh				_	
Strata Description	Legend	Depth	Level		iscontinuities		FSI	RQD	SCR	TCR	CORE RUN
OVERBURDEN - driller notes boulder clay Continued next sheet											Ŏ
Continued next sheet Remarks:	XXXX		<u> </u>	KEY				60	0"	NE	
Rotary openhole borehole to 22.60mBGL then hole continu	TCR SCR RQD FSI	Total Core Recovery. Solid Core Recovery Rock Quality Designation Fracture Spacing Index			GR INVE	IIGAT A	ND ND ND ND				

BOREHOLE RECORD (Rotary core)											
Project Name: Swords Ro	oad				H	ole ID: F	RС	4			
Client: Consultant: DBFL Location: Whitehall, Dublin Start date: 14/04/2010 Type of drilling: RC	End date: 15/04/2010				Co-ordinates: Elevation: Project no. Drilled by: Logged by:	- - 2442-02- T. Collins N. Sheeh				_	
Strata Description	Legend	Depth	Level		iscontinuities		FSI	RQD	SCR	TCR	CORE RUN
OVERBURDEN - driller notes boulder clay Continued next sheet			-111 -112 -113 -114 -115 -116 -117 -118 -119 -119 -119 -119 -119 -119 -119								0
Continued next sheet Remarks:	*****		<u> </u>	KEY							
Remarks: Rotary openhole borehole to 22.60mBGL then hole continu	TCR SCR RQD FSI	Total Core Recovery. Solid Core Recovery Rock Quality Designation Fracture Spacing Index			GR INVE	IIGAI A	ND IONS ND				

BOREHOLE RECORD (Rotary core)											
Project Name: Swords Roa	ad				. Н	ole ID: F	RC	4_			
Client:					Co-ordinates:	-					
Consultant: DBFL					Elevation:	<u>-</u>					
Location: Whitehall, Dublin					Project no.	2442-02-1	10				
Start date: 14/04/2010	End	date:	15/04	1/2010	Drilled by:	T. Collins					
Type of drilling: RC	1	dian	eter:	63 mm	Logged by:	N. Sheeha	an				z
Strata Description	Legend	Ę	el OD	D	iscontinuities						. R
·	Leg	Depth	Level				FSI	RQD	SCR	TCR	CORE RUN
OVERBURDEN - driller notes boulder clay			-								
			- 21								-
			- 22 22 								-
Recovery consists of stiff dark	\$ 0.00	22.60	ţ					0	0	70	22.60
grey black sandy gravelly CLAY with cobbles and boulders	× 0 × 0		- - 23								-
with cobbles and boulders	~							0	0	100	23.10 -
	0.000		-								-
	X 0.40 2040-6										-
	2000 AD		- 24								-
	X-0000										-
	X 0 0 0		ŀ					0	0	100	24.60 -
	\$ 0 0 0									100	-
	2000 2000 2000 2000		- 25 -								
	0.00 20.00		-								-
	\$ 0.00 \$ 0.00 \$ 0.00		-								-
The state of the s	2000 2000 2000		- - - 26								-
	\$0.00 \$0.00 \$0.00		-								-
Strong to very strong dark grey		26.30	-	Fractures ra	nge from medium to)		59	67	91	26.20 -
LIMESTONE with interbanding layers of black calcareous					ced, 45degrees,	.1-4.4-					-
mudstone, calcite veining present	111		- - 27	open and cla	ough to smooth, tig av coated	int to					-
and fresh to slightly weathered			[,						-
							7				-
	1111		-					73	90	93	27.60 -
			- 28 -								-
			-								
			ŀ					17	55	76	28.60 -
				Fractures ra	nge from very close ed, sub-horizontal t	e to		''	33	70	20.00
			- 29 -	20degrees, ¡	planar, rough to sm						-
			ļ.	tight to open	and clay coated		18				
	1 1 1		<u> </u>								
Continued next sheet			<u> </u>	LICENT							\boxminus
Remarks: Rotary openhole borehole to 22.60mBGL then hole continued	by rotary cor	ing techn	iques.	KEY TCR SCR RQD FSI	Total Core Recovery. Solid Core Recovery Rock Quality Designation Fracture Spacing Index			GR INVES IRE	OU IIIGAT A	ND IONS NO D	

BOR	BOREHOLE RECORD (Rotary core)										
Project Name: Swords Roa	Project Name: Swords Road Hole ID: RC4										
Client:						Co-ordinates: -					
Consultant: DBFL						Elevation: -				_	
Location: Whitehall, Dublin						Project no. 2442-02-	10				
Start date: 14/04/2010				1/2010		Drilled by: T. Collins					
Type of drilling: RC	Hole	diam	eter:	63	mm	Logged by: N. Sheeh	ian_		Т		Z
Strata Description	Legend	Depth	Level mAOD		Di	iscontinuities			~	~	E RUN
	Lec	De	Le MA				FS	RQD	SCR	100 z	SORI
Strong to very strong dark grey LIMESTONE with interbanding layers of black calcareous mudstone, calcite veining present and fresh to slightly weathered		31.00	-31	closely	spac ees, p	nge from medium to ced, sub-horizontal to blanar, rough to smooth,	9	66	86	100 2	9.90
			32								
			- 33 								
			- 35								
			- 36 								
			- 37								
			- 38 								
			- 39 		KEY						
Remarks: Rotary openhole borehole to 22.60mBGL then hole continued by rotary coring techniques.						Total Core Recovery. Solid Core Recovery Rock Quality Designation Fracture Spacing Index		GR INVES	OUI HEATI A	ND OZS D	





APPENDIX H

GII 2020 GROUND INVESTIGATION REPORT

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176

Email: info@gii.ie Web: www.gii.ie

Ground Investigations Ireland

Swords Road Whitehall Development

Eastwise Construction Ltd

Ground Investigation Report

August 2020

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176

Email: info@gii.ie Web: www.gii.ie

DOCUMENT CONTROL SHEET

Project Title	Swords Road Whitehall Development
Engineer	AECOM
Client	Eastwise Construction Ltd
Project No	9429-02-20
Document Title	Ground Investigation Report

Rev.	Status	Author(s)	Reviewed By	Approved By	Office of Origin	Issue Date
А	Draft	M Sutton	A McDonnell	F McNamara	Dublin	25 August 2020

Ground Investigations Ireland Ltd. present the results of the fieldworks and laboratory testing in accordance with the specification and related documents provided by or on behalf of the client. The possibility of variation in the ground and/or groundwater conditions between or below exploratory locations or due to the investigation techniques employed must be taken into account when this report and the appendices inform designs or decisions where such variation may be considered relevant. Ground and/or groundwater conditions may vary due to seasonal, man-made or other activities not apparent during the fieldworks and no responsibility can be taken for such variation. The data presented and the recommendations included in this report and associated appendices are intended for the use of the client and the client's geotechnical representative only and any duty of care to others is excluded unless approved in writing.

GROUND INVESTIGATIONS IRELAND

Geotechnical & Environmental

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176

Email: info@gii.ie Web: www.gii.ie

CONTENTS

1.0	Preamble	. 4
2.0	Overview	. 4
2.1.	Background	. 4
2.2.	Purpose and Scope	. 4
3.0	Subsurface Exploration	. 4
3.1.	General	. 4
3.2.	Trial Pits	. 5
3.3.	Soakaway Testing	. 5
3.4.	Cable Percussion Boreholes	. 5
3.5.	Rotary Boreholes	.6
3.6.	Surveying	. 6
3.7.	Groundwater/Gas Monitoring Installations	. 6
3.8.	TRL Dynamic Cone Penetrometer	.7
3.9.	Laboratory Testing	.7
4.0	Ground Conditions	.7
4.1.	General	.7
4.2.	Groundwater	. 8
4.3.	Laboratory Testing	. 8
4.3.1.	Geotechnical Laboratory Testing	. 8
4.3.1.	Chemical Laboratory Testing	.9
4.3.1.	Environmental Laboratory Testing	.9
4.3.1.	Rock Laboratory Testing	.9

APPENDICES

Appendix 1	Site Location Plan
Appendix 2	Trial Pit Records
Appendix 3	Soakaway Test Records
Appendix 4	TRL Dynamic Cone Penetrometer Records
Appendix 5	Borehole Records
Appendix 6	Laboratory Testing
Appendix 7	Groundwater Monitoring

1.0 Preamble

On the instructions of Aecom Consulting Engineers, a site investigation was carried out by Ground Investigations Ireland Ltd., between March and June 2020 at the site of the proposed residential development on Swords Road Whitehall, Dublin.

2.0 Overview

2.1. Background

It is proposed to construct a new residential development comprising seven multi story blocks of apartments and an eighth low level building housing a creche at the site including associated services, access roads and car parking. The site is currently brownfield with grass and low-level vegetation covering the majority of the site. The proposed construction is envisaged to consist of conventional or piled foundations and pavement make up with some local excavations for services and plant. A basement is proposed as part of the proposed scheme which will require excavation of approximately 4m BGL in parts of the site.

2.2. Purpose and Scope

The purpose of the site investigation was to investigate subsurface conditions utilising a variety of investigative methods in accordance with the project specification. The scope of the work undertaken for this project included the following:

- · Visit project site to observe existing conditions
- Carry out 13 No. Trial Pits to a maximum depth of 4.5m BGL
- Carry out 3 No. Soakaways to determine a soil infiltration value to BRE digest 365
- Carry out 10 No. Cable Percussion boreholes to a maximum depth of 8m BGL
- Carry out 3 No. Rotary Geobore Follow on boreholes to a maximum depth of 37m BGL
- Installation of 3 No. Groundwater monitoring wells
- Geotechnical & Environmental Laboratory testing
- Factual Report

3.0 Subsurface Exploration

3.1. General

During the ground investigation a programme of intrusive investigation specified by the Consulting Engineer was undertaken to determine the sub surface conditions at the proposed site. Regular sampling and insitu testing was undertaken in the exploratory holes to facilitate the geotechnical descriptions and to enable laboratory testing to be carried out on the soil samples recovered during excavation and drilling.

The procedures used in this site investigation are in accordance with Eurocode 7 Part 2: Ground Investigation and testing (ISEN 1997 – 2:2007) and B.S. 5930:2015.

3.2. Trial Pits

The trial pits were excavated using a 13T tracked excavator at the locations shown in the exploratory hole location plan in Appendix 1. The locations were checked using a CAT scan to minimise the potential for encountering services during the excavation. The trial pits were sampled, logged and photographed by a Geotechnical Engineer/Engineering Geologist prior to backfilling with arisings. Notes were made of any services, inclusions, pit stability, groundwater encountered and the characteristics of the strata encountered and are presented on the trial pit logs which are provided in Appendix 2 of this Report.

3.3. Soakaway Testing

The soakaway testing was carried out in selected trial pits at the locations shown in the exploratory hole location plan in Appendix 1. These pits were carefully excavated and filled with water to assess the infiltration characteristics of the proposed site. The pits were allowed to drain and the drop in water level was recorded over time as required by BRE Digest 365. The pits were logged prior to completing the soakaway test and were backfilled with arising's upon completion. The soakaway test results are provided in Appendix 3 of this Report.

3.4. Cable Percussion Boreholes

The Cable Percussion Boreholes were drilled using a Dando 2000 drilling rig with regular in-situ testing and sampling undertaken to facilitate the production of geotechnical logs and laboratory testing.

The standard method of boring in soil for site investigation is known as the Cable Percussion method. It consists of using a Shell in non cohesive soils and a clay cutter in cohesive soils, both operated on a wire cable. Very hard soils, boulders and other hard obstructions are broken up by chiselling and the fragments removed with the Shell. Where ground conditions made it necessary, the borehole was lined with 200mm diameter steel casing. While the use of the Cable Percussion method of boring gives the maximum data on soil conditions, some mixing of laminated soil is inevitable. For this reason, thin lenses of granular material may not be noticed. Disturbed samples were taken from the boring tools at suitable depths, so that there is a representative sample at the top of each change in stratum and thereafter at regular intervals down the borehole until the next stratum was encountered. The disturbed samples were then sealed and sent to the laboratory where they were visually examined to confirm the description of the relevant strata. Standard Penetration Tests were carried out in the boreholes. The results of these tests, together with the depths at which the tests were taken are shown on the accompanying borehole records. The test consists of a thick wall sampler tube, 50mm external diameter, being driven into the soil by a monkey weighing 63.5kg and with a free drop of 760mm. For gravels and glacial till the driving shoe was replaced by a solid 60° cone. The Standard Penetration Test number referred to as the 'N' value is the number of blows required to drive the tube 300mm, after an initial penetration of 150mm. The number gives a guide to the consistency of the soil and can also be used to estimate the relative strength/density at the depth of the test and also to estimate the bearing capacity and compressibility of the soil. The cable percussion borehole logs are provided in Appendix 5 of this Report.

3.5. Rotary Boreholes

The rotary coring was carried out by a track mounted Comacchio Geo 405 rig at the locations shown on the location plan in Appendix 1. The rotary boreholes were completed from the ground surface or alternatively, where noted on the individual borehole log, from the base of the cable percussion borehole where a temporary liner was installed to facilitate follow-on rotary coring.

The Comacchio Geo 405 is equipped with rubber tracks which allow for short travel on pavement surfaces avoiding any damage to the surface. The Comacchio Geo 405 utilises a triple tube core barrel system operated using a wireline drilling process. The outer barrel is rotated by the drill rods and at its lower end, carries the coring bit. The inner barrel is mounted on a swivel so that it does not rotate during the process. The third barrel or liner is placed within the second one to retain the core intact and to preserve as much as possible the fabric of the drilling stratum. The core is cut by the coring bit and passes to the inner liner. The core is brought up to the surface within the inner barrel on a small diameter wire rope or line attached to the "overshoot" recovery tool which is then placed into a core box in order of recovery. A drilling fluid, typically air mist or water flush is passed from the surface through hollow drill rods to the drill bit, and is used to cool the drill bit. Temporary casing is used in some situations to support unstable ground or to seal off fissures or voids.

It should be noted that the rotary coring can only achieve limited recovery in overburden, particularly granular or weakly cemented strata due to the flushing medium washing away the cohesive fraction during coring. The recovery achieved, where required is noted on the borehole logs and core photographs are provided to allow assessment of the core recovered. The rotary borehole logs are provided in Appendix 5 of this Report.

3.6. Surveying

The exploratory hole locations have been recorded using a KQ GEO Technologies KQ-M8 System which records the coordinates and elevation of the locations to ITM or Irish National Grid as required by the project specification. The coordinates and elevations are provided on the exploratory hole logs in the appendices of this Report.

3.7. Groundwater/Gas Monitoring Installations

Groundwater and or Gas Monitoring Installation were installed upon the completion of the boreholes to enable sampling and the determination of the equilibrium groundwater level. The typical groundwater monitoring installation consists of a 50mm HDPE slotted pipe with a pea gravel response zone and bentonite seal installed to the Engineers specification. Where required the standpipe is sealed with a gas tap and finished with a durable steel cover fixed in place with a concrete surround. The installation details are provided on the exploratory hole logs in the appendices of this Report.

3.8. TRL Dynamic Cone Penetrometer

The TRL DCP tests were carried out at locations specified by the Consulting Engineer to determine a CBR design value for the design of external pavements. The testing was carried out below the Topsoil or existing pavement at the depths detailed on the test report. The test consists of dropping a 10kg weight on an anvil to drive a small diameter cone and recording the blows for a given penetration. The results of the DCP testing is included in Appendix 4 of this Report.

3.9. Laboratory Testing

Samples were selected from the exploratory holes for a range of geotechnical and environmental testing to assist in the classification of soils and to provide information for the proposed design.

Environmental & Chemical testing as required by the specification, including the Rilta Suite pH and sulphate testing was carried out by Element Materials Technology Laboratory in the UK. The Rilta suite testing includes both Solid Waste and Leachate Waste Acceptance Criteria.

Geotechnical testing consisting of moisture content, Atterberg limits, Particle Size Distribution (PSD), hydrometer and California Bearing Ratio (CBR) tests were carried out in NMTL's Geotechnical Laboratory in Carlow. Specialist shear strength testing consisting of quick undrained, consolidated undrained triaxial, carried out on undisturbed U100 samples cut from Geobore core.

Rock strength testing including Point Load (Is₅₀) and Unconfined Compressive Strength (UCS) testing was carried out in Pro Soils Geotechnical Laboratory in the UK.

The results of the laboratory testing are included in Appendix 6 of this Report.

4.0 Ground Conditions

4.1. General

The ground conditions encountered during the investigation are summarised below with reference to insitu and laboratory test results. The full details of the strata encountered during the ground investigation are provided in the exploratory hole logs included in the appendices of this report.

The sequence of strata encountered were consistent across the site and are generally comprised;

- Topsoil/Surfacing
- Made Ground
- Cohesive Deposits
- Bedrock

TOPSOIL: Topsoil was encountered in the majority of exploratory holes and was present to a maximum depth of 0.65m BGL.

MADE GROUND: Made Ground deposits were encountered beneath the Topsoil/Surfacing and were present to a depth of between 0.2m and 1.5m BGL. These deposits were described generally as *brown* sandy slightly gravelly Clay with occasional cobbles or grey sandy angular Gravel. In some pits occasional

fragments of concrete, red brick, wood, ceramic, metal and cloth were noted. TP05, TP05A and TP05B encountered a concrete slab at depths of between 0.90m and 1.20m BGL where the trial were terminated.

COHESIVE DEPOSITS: Cohesive deposits were encountered beneath the Made Ground and were described typically as *brown sandy gravelly CLAY with occasional cobbles and boulders* overlying a *stiff black sandy gravelly CLAY with occasional cobbles and boulders*. A second sequence of brown overlying black CLAY was also encountered at depth in BH05 and BH09 that were drilled to prove rock level. The secondary sand and gravel constituents varied across the site and with depth, with granular lenses occasionally present in the glacial till matrix. The strength of the cohesive deposits typically increased with depth and was firm to stiff becoming stiff or very stiff in the majority of the exploratory holes. These deposits had some or occasional cobble and boulder content where noted on the exploratory hole logs.

BEDROCK: Boreholes BH05 and BH09 recovered Medium strong to very strong grey/dark grey fine to medium grained laminated LIMESTONE interbedded with weak black fine grained laminated Mudstone. This is typical of the Calp Formation, which is noted on the geological mapping to the east of the proposed site.

The depth to rock varies from 22.0m BGL in BH05 to a maximum of 32.3m BGL in BH09. The total core recovery is good, typically 100%. The SCR and RQD both vary with some areas recovered as non-intact.

4.2. Groundwater

Groundwater strikes are noted on the exploratory hole logs where they occurred and where possible drilling was suspended for twenty minutes to allow the subsequent rise in groundwater to be recorded. We would point out that these exploratory holes did not remain open for sufficiently long periods of time to establish the hydrogeological regime and groundwater levels would be expected to vary with the tide, time of year, rainfall, nearby construction and other factors. For this reason, standpipes were installed in BH01, BH06 and BH10 to allow the equilibrium groundwater level to be determined. The groundwater monitoring is included in Appendix 7 of this Report.

4.3. Laboratory Testing

4.3.1. Geotechnical Laboratory Testing

The geotechnical testing carried out on soil samples recovered generally confirm the descriptions on the logs with the primary constituent of the cohesive deposits found to be a CLAY of low to intermediate plasticity. The Particle Size Distribution tests confirm that generally the cohesive deposits are well-graded with percentages of sands and gravels ranging between 8.9% and 43.9% generally with fines contents of 26.6 to 57.1%.

The CBR testing on remoulded samples gave results ranging between 0.1% and 14.3% for the cohesive deposits.

The results from all the completed laboratory testing including MCV and triaxial testing is included in Appendix 6 of this report.

4.3.1. Chemical Laboratory Testing

The pH and sulphate testing carried out indicate that pH results are near neutral and that the water soluble sulphate results is low when compared to the guideline values from BRE Special Digest 1:2005. The samples tested classify the soil as a Design Sulphate Level DS-1.

4.3.1. Environmental Laboratory Testing

A number of samples were analysed for a suite of parameters which allows for the assessment of the sampled material in terms of total pollutant content for classification of materials as *hazardous* or *non-hazardous*. The suite also allows for the assessment of the sampled material in terms of suitability for placement at licenced landfills (inert, stable non-reactive, hazardous etc.). The parameter list for the suite includes analysis of the solid samples for arsenic, barium, cadmium, chromium, copper, cyanide, lead, nickel, mercury, zinc, speciated aliphatic and aromatic petroleum hydrocarbons, pH, sulphate, sulphide, moisture content, soil organic matter and an asbestos screen.

The suite also includes those parameters specified in the EU Council Decision establishing criteria for the acceptance of waste at Landfills (Council Decision 2003/33/EC), which for the solid samples are total organic carbon (TOC), speciated aliphatic and aromatic petroleum hydrocarbons, BTEX, phenol, polychlorinated biphenyls (PCB) and PAH.

As part of the suite a leachate is generated from the solid sample which is analysed for antimony, arsenic, barium, cadmium, chromium, copper, lead, mercury, molybdenum, nickel, selenium, zinc, chloride, fluoride, soluble sulphate, sulphide, phenols, dissolved organic carbon (DOC) and total dissolved solids (TDS).

While the laboratory report provides a comparison with the waste acceptance criteria limits it does not provide a waste classification of the material sampled nor does it comment on any potentially hazardous properties of the materials tested. The possibility for contamination, not revealed by the testing undertaken should be borne in mind particularly where Made Ground deposits are present or the previous site use or location indicate a risk of environmental variation. A waste classification report is recommended to be carried out to provide an interpretation of the laboratory data should any material be required to be disposed of off site.

4.3.1. Rock Laboratory Testing

The rock testing carried out on samples recovered from the boreholes reported Unconfined Compressive Strength (UCS) values ranging between 36.9 and 105.2 MPa while the point load testing gave Is50 values ranging between 0.25 to 6.10 MPa.

The results from the completed laboratory testing is included in Appendix 6 of this report.

APPENDIX 1 - Site Location Plan

APPENDIX 2 – Trial Pit Records

	Grou	ınd In	vestigations I	reland	Ltd	Site Swords Road, Whitehall		Trial Pit Number TP01
Machine: 1 Method: T	3.5T Excavator rial Pit	Dimens 5.20 X	ions 1.20 X 4.50		Level (mOD 42.39	Client Eastwise		Job Number 9429-02-20
		Locatio	n 6756.1 E 738158.8 N	Dates 05	5/03/2020	Project Contractor		Sheet 1/2
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness	D	escription	Legend Nate
					(0.25)	MADE GROUND: Grey sli sub-angular fine to coarse	ightly sandy angular to e Gravel.	
				42.14	(0.20)			
0.70 0.70 1.00	B T SV 115kPa		101,90,70/Av. 87.00	41.94		Firm to stiff grey mottled b with occasional sub-angul Gravel is sub-angular to s	rown slightly sandy gravelly Ci ar to sub-rounded cobbles. ub-rounded fine to coarse.	AY (0.00 o o o o o o o o o o o o o o o o o o
1.60 1.60	B T			40.49	1.90	Stiff dark grey slightly san sub-rounded cobbles.Gray fine to coarse.	dy gravelly CLAY with occasion vel is sub-angular to sub-round	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2.40 2.40	B T			39.99	2.40	occasional sub-angular to sub-angular to sub-rounde	r sandy gravelly CLAY with sub-rounded cobbles. Graveled fine to coarse.	is
4.00	В				- - - - - - -			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Plan .						l Remarks		
						Trial pit complete at 4.50m B No Groundwater encounterd Trial pit stable. Trial pit backfilled on comple	ed during excavation.	
						Scale (approx)		igure No.
						1:25	Tmcl 9	429-02-20.TP01

	Gro	und In	vestigations www.gii.ie	Ireland	Ltd	Site Swords Road, Whitehall		
Machine: 13	3.5T Excavator	Dimens		Ground	Level (mOD) 42.39	Client Eastwise		Job Number 9429-02-20
		Locatio	n 6756.1 E 738158.8 N	Dates 05	5/03/2020	Project Contractor		Sheet 2/2
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Tegend Nate
4.00 Plan .	т					Complete at 4.50m		9 - 2 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4
				·		Scale (approx)	Logged By	Figure No. 9429-02-20.TP01

	Grou	ınd Inv	estigations www.gii.ie	Ireland	Ltd	Site Swords Road, Whitehall		Trial Pit Number TP02
Machine: 13 Method: To	3.5T Excavator rial Pit	Dimensio 4.60 X 1.	ons 20 X 3.20		Level (mOD) 42.38	Client Eastwise		Job Number 9429-02-20
		Location 7167	730.1 E 738109.8 N	Dates 05	5/03/2020	Project Contractor		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	С	Description	Legend Nater
0.50 0.50	B T			42.08	0.30		tly gravelly TOPSOIL with root slightly sandy gravelly CLAY wi sub-rounded cobbles. Gravel ed fine to coarse.	
1.00	SV 101kPa				- - - - - - - - - - - - - - - - - - -			
1.50 1.50	B T			40.28	2.10	Stiff dark grey slightly san sub-rounded cobbles. Gre sub-rounded fine to coars	dy gravelly CLAY with occasion avel is sub-angular to e.	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2.70 2.70	BT			39.18	3.20	Complete at 3.20m		6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 7 0 0 7 0 0
Plan .						 Remarks		
						Trial pit complete at 3.2m B No Groundwater encounter Trial pit stable. Trial pit backfilled on comple	ed during excavation	
		•				Scale (approx)	Logged By F	igure No.

	Grou	nd In	vestigations I www.gii.ie	reland	Ltd	Site Swords Road, Whitehall		Trial Pit Number TP03
Machine : 13	3.5T Excavator rial Pit	Dimens 4.60 X	ions 1.20 X 3.20		Level (mOD) 40.79	Client Eastwise		Job Number 9429-02-20
		Locatio	n 6721.6 E 738061.4 N	Dates 05	5/03/2020	Project Contractor		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness	D	escription	Vater Page N
				40.59	(0.20) - 0.20		andy angular to sub-angular fin slightly gravelly CLAY. Gravel ed fine to coarse.	XXXXXXX
0.50 0.50	ВТ			39.89	(0.70) - - - - - - - - - - - - - - - - - - -			
1.00	SV 101kPa		76,77,77/Av. 76.67	39.69	- 0.90	occasional sub-angular to sub-angular to sub-rounde	lightly sandy gravelly CLAY w sub-rounded cobbles. Gravel ed fine to coarse.	ith s s s s s s s s s s s s s s s s s s s
1.80 1.80	B T			38.49	2.30	Stiff dark grey slightly sand sub-angular to sub-rounded to sub-rounded fine to coal	dy gravelly CLAY with occasic ed cobbles. Gravel is sub-ang arse.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2.70 2.70	ВТ			37.79	- (0.70) 			() () () () () () () () () ()
Plan					- - - - -	Remarks		
						Trial pit complete at 3.0m Bt No Groundwater encountere Trial pit stable. Trial pit backfilled on comple	ed during excavation.	
		•				Scale (approx) 1:25		Figure No. 9429-02-20.TP03

	Grou	nd In	vestiga www.	tions Ire gii.ie	land l	Ltd	Site Swords Road, Whitehall Trial Pit Number TP04		
Machine: 13	3.5T Excavator	Dimens 4.30 X		<u> </u>		Level (mOD) 41.77	Client Eastwise		Job Number 9429-02-20
		Locatio	n 6800.4 E 7381	32.1 N	Dates 05	5/03/2020	Project Contractor		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field	Records	Level (mOD)	Depth (m) (Thickness	D	escription	Legend X
					41.57	-		tly gravelly TOPSOIL with roo ey slightly sandy gravelly Cla of red brick and concrete.	
0.50	В				41.37	0.40		of red brick and concrete. ey slightly sandy gravelly Clasub-rounded cobbles and oth and metal.	
0.50 0.50	B T						occasional fragments of cl	our and metal.	
					40.67	1.10	Firm to stiff grey mottled b with occasional sub-angul Gravel is sub-angular to si	rown slightly sandy gravelly ar to sub-rounded cobbles. ub-rounded fine to coarse.	CLAY
1.80 1.80	B T								6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1.60	'				39.47	2.30	Stiff dark grey slightly sand	dy gravelly CLAY with occasi d cobbles. Gravel is sub-an	0 2 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
2.50 2.50	B T						sub-angular to sub-rounde to sub-rounded fine to coa	d cobbles. Gravel is sub-ang rse.	gular
					38.77	3.00	Complete at 3.00m		0 - 2 4 - 4 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 -
Plan .							Remarks		
							Trial pit complete at 3.0m B0 No Groundwater encountere Trial pit stable. Trial pit backfilled on comple	ed during excavation.	
		٠							
		٠					Scale (approx) 1:25	Logged By	Figure No. 9429-02-20.TP04

	Grou	nd In	vestigations www.gii.ie	Ireland	Ltd	Site Trial Pit Number TP05		
Machine: 1	3.5T Excavator	Dimens 2.40 X			Level (mOD) 40.29	Client Eastwise		Job Number 9429-02-20
		Locatio	n 6864.2 E 738100.3 N	Dates 05	5/03/2020	Project Contractor		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Kegend zage X
				40.09	(0.20) - (0.20) - 0.20	Dark brown slightly sandy rootlets. MADE GROUND: Dark grayelly Clay with occasion concrete.	slightly gravelly TOPSOIL we eyish brown slightly sandy nal fragments of cloth and	vith
0.50 0.50	B T		60.70.65/Av. 65.00	39.49	(0.60) 	MADE GROUND: Greyish Clay with rare fragments o	brown slightly sandy grave f concrete.	lly
1.00	SV 86kPa B T		39.09		Obstruction: CONCRETI	<u>=</u> .		
Plan .		•			•	Remarks Trial pit complete at 1.2m B0 No Groundwater encountere	GL.	
		•				Trial pit stable. Trial pit backfilled on comple		
		•						
· · · ·								
						Scale (approx)	Logged By	Figure No.
						1:25	Tmcl	9429-02-20.TP05

	Groui	nd In	vestigati www.gi	ons Irel i.ie	land l	Ltd	Site Swords Road, Whitehall Trial Pit Number TP05A		
Machine: 13 Method: Tr	3.5T Excavator	Dimens 2.20 X				Level (mOD) 39.94	Client Eastwise		Job Number 9429-02-20
		Location 716	n 6877.8 E 738099).1 N	Dates 06	/03/2020	Project Contractor		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Re	cords	Level (mOD)	Depth (m) (Thickness)	D	escription	Kater Kater
0.50 0.50	ВТ				39.54	- (0.50) - (0.50) - (0.50) - (0.50) - (0.50)	rootlets.	eyish brown slightly sandy onal fragments of metal and	
Plan .		•				•	Trial pit complete at 0.9m BO	GL. ed during excavation.	
		-					Trial pit sidewalls spalling. Trial pit backfilled on comple	etion.	
						.	Scale (approx)	Logged By	Figure No. 9429-02-20.TP05A

	Grou	nd In	vestigations www.gii.ie	Ireland	Ltd	Site Swords Road, Whitehall		Trial Pit Number TP05B
Machine: 13	3.5T Excavator rial Pit	Dimens 2.20 X	i ons 1.20 X 0.90		Level (mOD) 39.93	Client Eastwise		Job Number 9429-02-20
		Location 716	n 5880.3 E 738107.7 N	Dates 06	6/03/2020	Project Contractor		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Tegend Water
0.50 0.50	B			39.63	(0.60)	rootlets.	eyish brown slightly sandy onal fragments of plastic an	
Plan .		•				Remarks Trial pit complete at 0.9m Boognoundwater encountered	GL.	
						No Groundwater encounters Trial pit stable. Trial pit backfilled on comple	ed during excavation.	
				•				
					<u>s</u>	Scale (approx)	Logged By	Figure No. 9429-02-20.TP05A

Machine : 13.5T Excavator Dimensions 3.70 X 1.20 X 3.00 Ground Level (mOD) 40.41 Client Eastwise Location Dates 06/03/2020 Project Con	Job Number
Location Dates Project Con	9429-02-20
716853.3 E 738107.1 N GII	tractor Sheet
Depth (m) Sample / Tests Water Depth (m) Field Records Level (mOD) Thickness)	Description Legend Legend
[(0.25)	tly sandy slightly gravelly TOPSOIL with rootlets.
40.16 - 0.25 MADE GRO with occasion	DUND: Dark grey slightly sandy gravelly Clay onal fragments of red brick.
39.86 - 0.55 MADE GRO gravelly Cla	OUND: Greyish brown slightly sandy slightly y with occasional fragments of clay pipe.
0.90 I	ottled brown slightly sandy gravelly CLAY with sub-angular to sub-rounded cobbles. Gravel is to sub-rounded fine to coarse.
(1.20)	6
2.00 B T Stiff dark gr sub-angular to sub-roun	ey slightly sandy gravelly CLAY with occasional to sub-rounded cobbles. Gravel is sub-angular ded fine to coarse.
2.90 B T 37.41 3.00 Complete at	・
Plan Remarks	
No Groundwa Trial pit stable	lete at 3.0m BGL. Iter encountered during excavation. Iled on completion.

	Grou	nd In		ations II	Ltd	Site Swords Road, Whitehall	Trial Pit Number TP06	
Machine: 1	3.5T Excavator	Dimens 6.00 X	sions 1.20 X 4.30			Level (mOD 41.57	Client Eastwise	Job Number 9429-02-20
		Locatio	on 6798.2 E 738	3099.6 N	Dates 05	5/03/2020	Project Contractor GII	Sheet 1/2
Depth (m)	Sample / Tests	Water Depth (m)	Field	d Records	Level (mOD)	Depth (m) (Thickness	Description)	Legend Nate
0.10	SV 75kPa		50,50,70/Av	v. 56.67	44.00	(0.25)	Brown slightly sandy slightly gravelly TOPSOIL with rootlets	
					41.32	(0.25)		
0.60	B T				41.02	0.55	MADE GROUND: Dark grey slightly sandy clayey angular to sub-angular fine to coarse Gravel. Firm grey mottled brown slightly sandy gravelly CLAY with	6 · · · · · · · · · · · · · · · · · · ·
1.50 1.50	T B T					- - - - - - - - - - - - - - - - - - -	occasional sub-angular to sub-rounded cobbles. Gravel is sub-angular to sub-rounded fine to coarse.	
2.70 2.70	B T				39.17	2.40	Stiff dark grey slightly sandy gravelly CLAY with occasional sub-angular to sub-rounded cobbles. Gravel is sub-angular to sub-rounded fine to coarse.	
3.70 3.70	B T				38.57	3.00	occasional sub-angular to sub-rounded cobbles. Gravel is sub-angular to sub-rounded fine to coarse.	
Plan							Remarks	* (
							Trial pit complete at 4.30m BGL. No Groundwater encountered during excavation. Trial pit stable.	
							Trial pit backfilled on completion. Soakaway completed adjacent to Trial pit.	
								ure No.
							1:25 Tmcl 942	9-02-20.TP06

	Grou	ınd Inv	estigations www.gii.ie	Ireland	Ltd	Site Swords Road, Whitehall		Trial Pit Number TP06
Machine: 1	3.5T Excavator	Dimension		Ground	Level (mOD) 41.57	Client Eastwise		Job Number 9429-02-20
		Location 716	798.2 E 738099.6 N	Dates 05	5/03/2020	Project Contractor		Sheet 2/2
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Vater Page N
				37.27		Obstruction: Presumed to Complete at 4.30m	poulder.	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Plan .		•			'	Remarks		
				·				
						Scale (approx)	Logged By	Figure No.
						1:25	Tmcl	9429-02-20.TP06

	Grou	nd In		gatio w.gii.	ns Irel ie	Ltd	Site Trial Pit Number TP07			
Machine: 13	3.5T Excavator rial Pit	Dimens 4.40 X					Level (mOD) 40.64	Client Eastwise		Job Number 9429-02-20
		Locatio 71	n 6790 E 73	38033.8 N	ı	Dates 05	/03/2020	Project Contractor		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	F	ield Rec	ords	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend sp
0.70 0.70	B T					40.04	(0.60) - (0.60) - (0.60) - (0.35)	rootlets.	slightly gravelly TOPSOIL work and slightly sandy slightly conal fragments of wood and	
1.40	B T					39.69	0.95	Soft brown slightly sandy s sub-angular to sub-rounde to sub-rounded fine to coa	slightly gravelly CLAY with rad cobbles. Gravel is sub-an rse.	are
1.40			ss(1) at 2	2.80m.						
3.30 3.30	B T					37.24	3.40	Complete at 3.40m		6. 6. 4. 6. 6. 4. 6. 6. 4. 6. 6. 4. 6. 6. 4. 6. 6. 4.
Plan .							•	⊥ Remarks		
								Trial pit complete at 3.40m E Groundwater encountered - Trial pit collapsed from 1.60 Trial pit backfilled on comple	SGL. Slight Seepage at 2.80m Bom to 2.90m BGL. stion.	GL.
							.	Gcale (approx)	Logged By	Figure No. 9429-02-20.TP07

	Grou	ınd In	vestigatio www.gii.		and l	Ltd	Site Swords Road, Whitehall		Trial Pit Number TP08		
Machine: 13	3.5T Excavator	Dimens 4.20 X	ions 1.20 X 3.20			Level (mOD) 39.78	Client Eastwise		Job Number 9429-02-20		
		Locatio	n 6841.8 E 738022.4	4 N	Dates 05	/03/2020	Project Contractor		Sheet 1/1		
Depth (m)	Sample / Tests	Water Depth (m)	Field Rec	ords	Level (mOD)	Depth (m) (Thickness)	D	escription	Kegend Nation		
							Dark brown slightly sandy rootlets.	slightly gravelly TOPSOIL w	ith		
0.70 0.70	B T				39.13	- 0.65 - - -	Firm grey mottled brown s sub-angular to sub-rounde to sub-rounded fine to coa	lightly sandy gravelly CLAY od d cobbles. Gravel is sub-ang rse.	with so o o o		
1.00	SV 86kPa		60,70,65/Av. 65.0	00		- - - - - - - -					
1.50 1.50	B T					(1.85)					
2.80 2.80	B T				37.28	2.50	Stiff dark grey slightly sand sub-angular cobbles. Grav fine to coarse.	dy gravelly CLAY with occasi rel is sub-angular to sub-rou	ional a a a a a a a a a a a a a a a a a a		
					36.58	- 3.20 	Complete at 3.20m		W - A V -		
Plan .		•				.	Remarks	001			
				-			Trial pit complete at 3.20m BGL. No Groundwater encountered during excavation. Trial pit stable. Trial pit backfilled on completion. Soakaway completed adjacent to Trial pit.				
				•							
		·		·		.	Scale (approx)	Logged By	Figure No. 9429-02-20.TP08		

	Grou	ınd In	vestigatio www.gii.i		and l	Ltd	Site Swords Road, Whitehall		Trial Pit Number TP09		
Machine: 13	3.5T Excavator	Dimens 4.30 X	ions 1.20 X 3.20			Level (mOD) 40.37	Client Eastwise		Job Number 9429-02-20		
		Locatio	n 6762.6 E 738021 N	l	Dates 05	/03/2020	Project Contractor		Sheet 1/1		
Depth (m)	Sample / Tests	Water Depth (m)	Field Reco	ords	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend X		
0.60 0.60	B T				39.97 39.67	(0.40) - (0.40) - (0.30) - (0.70)	MADE GROUND: Greyish gravelly CLAY with rare fra	brown slightly sandy slightly gravelly CLAY is sub-rounded cobbles. Graved fine to coarse.	,		
1.00	SV 82kPa		65,60,62/Av. 62.33	3							
1.90 1.90	ВТ				37.77						
2.80 2.80	B T				37.17	(0.60)	Stiff dark grey slightly sand sub-angular to sub-rounded to sub-rounded fine to coat	dy gravelly CLAY with occasi d cobbles. Gravel is sub-an rse.	onal one of the second of the		
					67.11	-	Complete at 3.20m				
Plan .							Remarks Trial pit complete at 3,20m E	BGL.			
							Trial pit complete at 3.20m BGL. No Groundwater encountered during excavation. Trial pit stable. Trial pit backfilled on completion. Soakaway completed adjacent to Trial pit.				
		•		٠		-	Scale (approx)	Logged By	Figure No. 9429-02-20.TP09		

GI	Grou	nd Inv	estigatior www.gii.ie		nd L	_td	Site Swords Road, Whitehall		Trial Pit Number TP10
Machine: 13	3.5T Excavator ial Pit	Dimensions 4.50 X 1.20 X 3.00			Ground Level (mOD) 40.69 Dates 05/03/2020		Client Eastwise Project Contractor GII		Job Number 9429-02-20
		Location 7168		Sheet 1/1					
Depth (m)	Sample / Tests	Water Depth (m)	Field Reco	rds Le	evel iOD)	Depth (m) (Thickness)	Description	Legend Nate
Depth (m) Sample / Tes 0.50 0.50 T 1.40 1.40 T 2.80 2.80 T	B T			39.19 (0.	(0.15) 0.15) 0.15) 0.25 (0.10) 0.26 (0.110) 0.26 (0.15) 0.40 	Brown slightly sandy slightly gravelly TOPSOIL with rootlets. MADE GROUND: Dark grey slightly sandy very clayey angular to sub-angular fine to coarse Gravel. MADE GROUND: Dark greyish brown slightly sandy gravelly Clay with occasional fragments of metal. MADE GROUND: Grey mottled brown slightly sandy gravelly CLAY with some sub-angular to sub-rounded cobbles and some patches of dark grey clay.(Reworked Ground) Firm to stiff grey mottled brown slightly sandy gravelly CLAY with occasional sub-angular to sub-rounded fine to coarse. Stiff dark grey slightly sandy gravelly CLAY with occasional sub-angular to sub-rounded cobbles. Gravel is sub-angular to sub-rounded cobbles. Gravel is sub-angular to sub-rounded fine to coarse.		AY	
Plan .							Remarks Trial pit complete at 3.00m l No Groundwater encounter Trial pit collapsed below 0.6 Trial pit backfilled on comple	ed during excavation. 30m BGL.	
							Scale (approx) 1:25		igure No. 429-02-20.TP10

Swords Road, Whitehall – Trial Pit Photographs TP01

TP05A

TP05A

TP05B

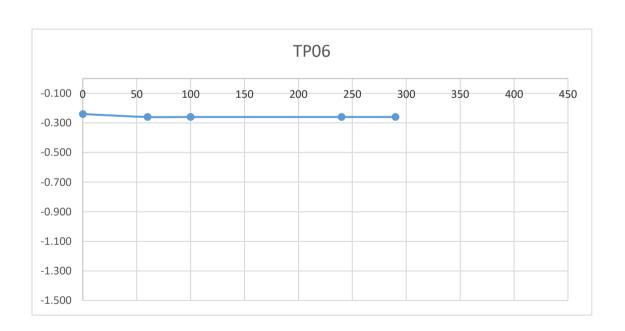
TP05C

TP05C

APPENDIX 3 – Soakaway Test Records

TP06
Soakaway Test to BRE Digest 365
Trial Pit Dimensions: 2.3m x 0.60m x 0.9m (L x W x D)

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52


Tel: 01 601 5175 / 5176 Email: info@gii.ie Web: www.gii.ie

Date	Time	Water level (m bgl)
06/03/2020	0	-0.240
06/03/2020	60	-0.260
06/03/2020	100	-0.260
06/03/2020	240	-0.260
06/03/2020	290	-0.260

*Soakaway failed - Pit backfilled

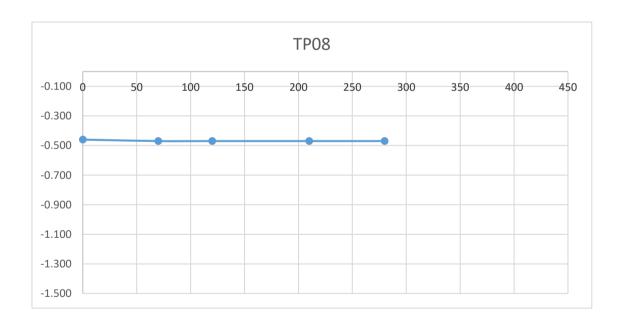
 Start depth
 Depth of Pit
 Diff
 75% full
 25%full

 0.24
 0.900
 0.660
 0.405
 0.735

TP08
Soakaway Test to BRE Digest 365
Trial Pit Dimensions: 2.4m x 0.60m 1.5m (L x W x D)

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176 Email: info@gii.ie


Email: info@gii.ie Web: www.gii.ie

Date	Time	Water level (m bgl)
06/03/2020	0	-0.460
06/03/2020	70	-0.470
06/03/2020	120	-0.470
06/03/2020	210	-0.470
06/03/2020	280	-0.470
		*A1 (-'1- I

*Soakaway failed - Pit backfilled

 Start depth
 Depth of Pit
 Diff
 75% full
 25%full

 0.46
 1.500
 1.040
 0.72
 1.24

TP09
Soakaway Test to BRE Digest 365
Trial Pit Dimensions: 2.2m x 0.60m 1.5m (L x W x D)

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52


Tel: 01 601 5175 / 5176 Email: info@gii.ie Web: www.gii.ie

Date	Time	Water level (m bgl)
06/03/2020	0	-0.300
06/03/2020	70	-0.300
06/03/2020	120	-0.300
06/03/2020	210	-0.300
06/03/2020	280	-0.300

*Soakaway failed - Pit backfilled

 Start depth
 Depth of Pit
 Diff
 75% full
 25%full

 0.30
 1.500
 1.200
 0.6
 1.2

APPENDIX 4 – TRL Dynamic Cone Penetration Records

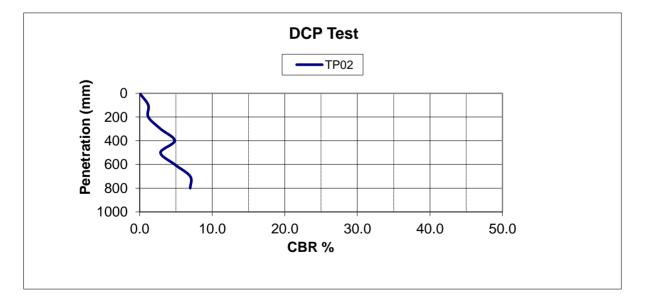
Tel: 01 601 5175 / 5176

Email: info@gii.ie Web: www.gii.ie

Job Name Swords Road, Whitehall Test Type Dynamic Cone Penetration Test

Job No. 9429-02-20 Test Reference TP02

Client AECOM By T McIntyre


Date 06/03/2020

Initial Depth Ground level

Depth (mm bgl)	No. of Blows per 100mm	Penetration per Blow (mm)	CBR (%)
0	-	-	0.0
100	1	100.0	1.2
200	1	100.0	1.2
300	2	50.0	2.9
400	3	33.3	4.8
500	2	50.0	2.9
600	3	33.3	4.8
700	4	25.0	7.0
800	4	25.0	7.0
900	7	14.3	14.2
1000	-		
1100	-		
1200	-		
1300	-		
1400	-		
1500	-		

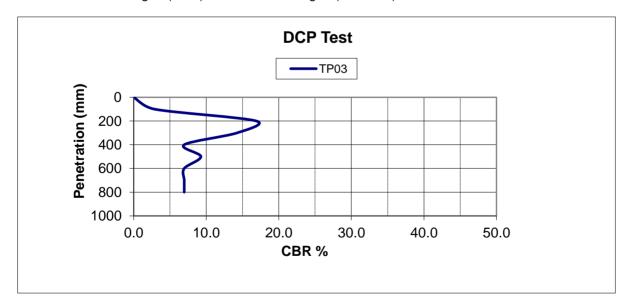
Reference Kleyn and Van Heerden (60° Cone)

Formula Log10 (CBR) = 2.632 - 1.28 Log10 (mm/blow)

01 601 5175 / 5176 Tel:

Email: info@gii.ie Web: www.gii.ie

Job Name Swords Road, Whitehall **Test Type** Dynamic Cone Penetration Test


Test Reference TP03 Job No. 9429-02-20 Client **AECOM** Ву T McIntyre

Date 06/03/2020

Initial Depth Ground level

Depth (mm bgl)	No. of Blows per 100mm	Penetration per Blow (mm)	CBR (%)
0	-	-	0.0
100	2	50.0	2.9
200	8	12.5	16.9
300	7	14.3	14.2
400	4	25.0	7.0
500	5	20.0	9.3
600	4	25.0	7.0
700	4	25.0	7.0
800	4	25.0	7.0
900	6	16.7	11.7
1000	-		
1100	-		
1200	-		
1300	-		
1400	-		
1500	-		

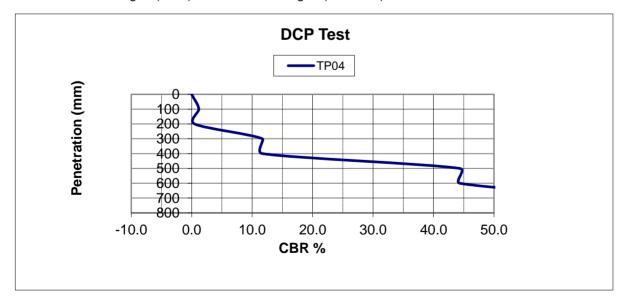
Reference

01 601 5175 / 5176 Tel:

Email: info@gii.ie Web: www.gii.ie

Job Name Swords Road, Whitehall **Test Type** Dynamic Cone Penetration Test

Test Reference TP04 Job No. 9429-02-20


Client **AECOM** Ву T McIntyre

> **Date** 06/03/2020

Initial Depth Ground level

Depth (mm bgl)	No. of Blows per 100mm	Penetration per Blow (mm)	CBR (%)
0	-	-	0.0
100	1	100.0	1.2
200	0	200.0	0.5
300	6	16.7	11.7
400	6	16.7	11.7
500	17	5.9	44.4
600	17	5.9	44.4
700	25	4.0	72.7
800	-	-	-
900	-	-	-
1000	-	-	-
1100	-	-	-
1200	-	-	-
1300	-	-	-
1400	-	-	-
1500	-	-	-

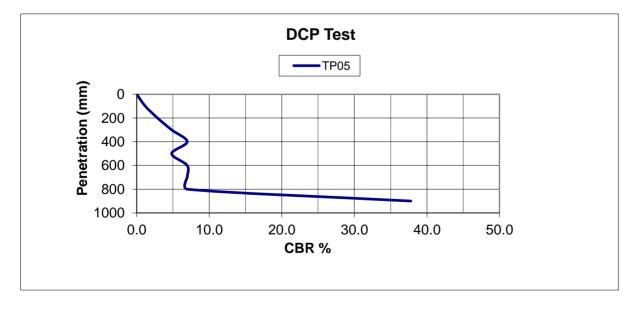
Reference

01 601 5175 / 5176 Tel:

Email: info@gii.ie Web: www.gii.ie

Job Name Swords Road, Whitehall **Test Type** Dynamic Cone Penetration Test

Test Reference TP05 Job No. 9429-02-20


Client **AECOM** Ву T McIntyre

> **Date** 06/03/2020

Initial Depth Ground level

Depth (mm bgl)	No. of Blows per 100mm	Penetration per Blow (mm)	CBR (%)
0	-	-	0.0
100	1	100.0	1.2
200	2	50.0	2.9
300	3	33.3	4.8
400	4	25.0	7.0
500	3	33.3	4.8
600	4	25.0	7.0
700	4	25.0	7.0
800	4	25.0	7.0
900	15	6.7	37.8
1000	-		
1100	-		
1200	-		
1300	-		
1400	-		
1500	-		

Reference

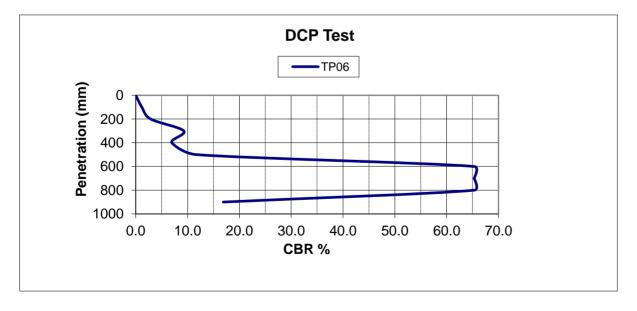
Tel: 01 601 5175 / 5176

Email: info@gii.ie Web: www.gii.ie

Job Name Swords Road, Whitehall Test Type Dynamic Cone Penetration Test

Job No. 9429-02-20 **Test Reference** TP06

Client AECOM By T McIntyre


Date 06/03/2020

Initial Depth Ground level

Depth (mm bgl)	No. of Blows per 100mm	Penetration per Blow (mm)	CBR (%)
0	-	-	0.0
100	1	100.0	1.2
200	2	50.0	2.9
300	5	20.0	9.3
400	4	25.0	7.0
500	6	16.7	11.7
600	23	4.3	65.3
700	23	4.3	65.3
800	23	4.3	65.3
900	8	12.5	16.9
1000	-		
1100	-		
1200	-		
1300	-		
1400	-		
1500	-		

Reference Kleyn and Van Heerden (60° Cone)

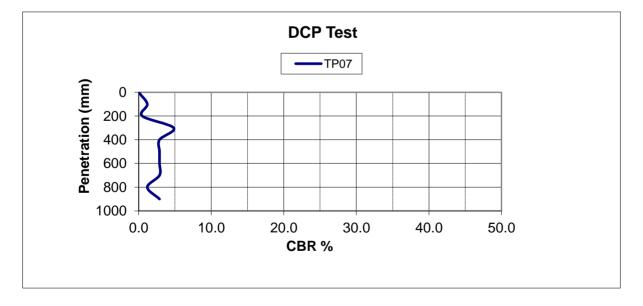
Formula Log10 (CBR) = 2.632 - 1.28 Log10 (mm/blow)

01 601 5175 / 5176 Tel:

Email: info@gii.ie Web: www.gii.ie

Job Name Swords Road, Whitehall **Test Type** Dynamic Cone Penetration Test

Test Reference TP07 Job No. 9429-02-20


Client **AECOM** Ву T McIntyre

> **Date** 06/03/2020

Initial Depth Ground level

Depth (mm bgl)	No. of Blows per 100mm	Penetration per Blow (mm)	CBR (%)
0	-	-	0.0
100	1	100.0	1.2
200	0	200.0	0.5
300	3	33.3	4.8
400	2	50.0	2.9
500	2	50.0	2.9
600	2	50.0	2.9
700	2	50.0	2.9
800	1	100.0	1.2
900	2	50.0	2.9
1000	-		
1100	-		
1200	-		
1300	-		
1400	-		
1500	-		

Reference

01 601 5175 / 5176 Tel:

Email: info@gii.ie Web: www.gii.ie

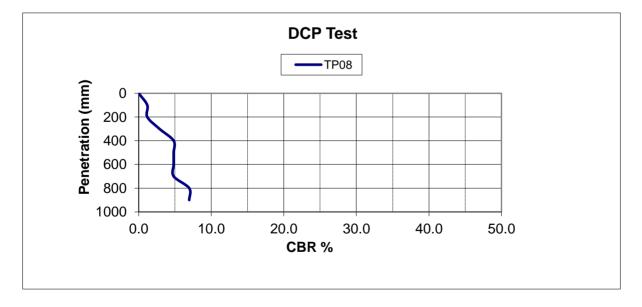
Swords Road, Whitehall

Test Type Dynamic Cone Penetration Test Test Reference TP08

Job No. 9429-02-20 Client **AECOM**

Job Name

T McIntyre Ву


Date

06/03/2020

Initial Depth Ground level

Depth (mm bgl)	No. of Blows per 100mm	Penetration per Blow (mm)	CBR (%)
0	-	-	0.0
100	1	100.0	1.2
200	1	100.0	1.2
300	2	50.0	2.9
400	3	33.3	4.8
500	3	33.3	4.8
600	3	33.3	4.8
700	3	33.3	4.8
800	4	25.0	7.0
900	4	25.0	7.0
1000	-		
1100	-		
1200	-		
1300	-		
1400	-		
1500	-		

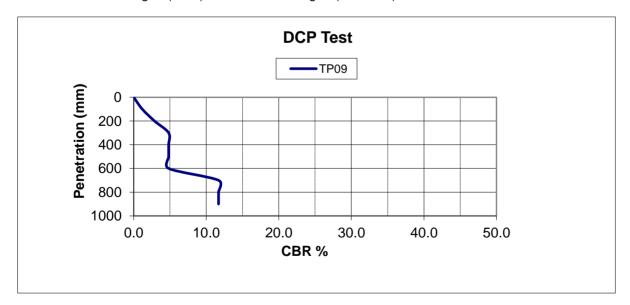
Reference

01 601 5175 / 5176 Tel:

Email: info@gii.ie Web: www.gii.ie

Job Name Swords Road, Whitehall **Test Type** Dynamic Cone Penetration Test

Test Reference TP09 Job No. 9429-02-20


Client **AECOM** Ву T McIntyre

> **Date** 06/03/2020

Initial Depth Ground level

Depth (mm bgl)	No. of Blows per 100mm	Penetration per Blow (mm)	CBR (%)
0	-	-	0.0
100	1	100.0	1.2
200	2	50.0	2.9
300	3	33.3	4.8
400	3	33.3	4.8
500	3	33.3	4.8
600	3	33.3	4.8
700	6	16.7	11.7
800	6	16.7	11.7
900	6	16.7	11.7
1000	-		
1100	-		
1200	-		
1300	-		
1400	-		
1500	-		

Reference

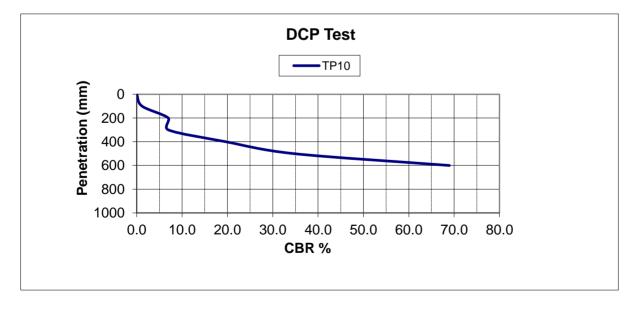
Tel: 01 601 5175 / 5176

Email: info@gii.ie Web: www.gii.ie

Job Name Swords Road, Whitehall Test Type Dynamic Cone Penetration Test

 Job No.
 9429-02-20
 Test Reference
 TP10

 Client
 AECOM
 By
 T McIntyre


Date 06/03/2020

Initial Depth Ground level

Depth (mm bgl)	No. of Blows per 100mm	Penetration per Blow (mm)	CBR (%)
0	-	-	0.0
100	1	100.0	1.2
200	4	25.0	7.0
300	4	25.0	7.0
400	9	11.1	19.7
500	14	7.1	34.6
600	24	4.2	69.0
700	-	-	-
800	-	-	-
900	-	-	-
1000	-		
1100	-		
1200	-		
1300	-		
1400	-		
1500	-		

Reference Kleyn and Van Heerden (60° Cone)

Formula Log10 (CBR) = 2.632 - 1.28 Log10 (mm/blow)

APPENDIX 5 - Borehole Records

Ground Investigations Ireland Ltd www.gii.ie								Site Swords Road, Whitehall			orehole umber BH01
Machine: Dando 2000 Method: Cable Percussion		Casing 20	Ground Level (mOD) 42.29			Client Eastwise			ob umber 29-02-20		
		Locatio		738180.3 N	Dates 24	·/06/2020)	Project Contractor GII		SI	heet 1/1
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Dept (m) (Thickn	h ess)	Description	Legend	Water	Instr
						(1	.20)	MADE GROUND: Dark grey slightly sandy slightly silty slightly gravelly CLAY with occasional subangular to subrounded cobbles of predominantly limestone, crushed brick and concrete fragments.			
1.00-1.45 1.00	SPT(C) N=12 B			2,3/7,1,2,2	41.09	1 - 1 - 1	.20	Firm-stiff greyish brown slightly sandy slightly gravelly CLAY with occasional subangular to subrounded cobbles of limestone. Gravel is subangular to subrounded fine to coarse.	6		
2.00-2.45 2.00	SPT(C) N=15 B			3,4/4,4,3,4		(2	.30)				
3.00-3.45 3.00	SPT(C) N=11 B			2,3/3,2,3,3					0 0 0 0 0 0 0 0 0 0 0 0	▼ 1	
4.00-4.45 4.00	SPT(C) N=31 B			Water strike(1) at 3.50m, rose to 3.00m in 20 mins. 5,6/7,7,10,7	38.79		3.50	Very stiff dark grey/ black slightly sandy slightly gravelly CLAY with occasional subangular to subrounded cobbles and boulders of predominantly limestone. Gravel is subangular to subrounded fine to coarse.		∇ 1	
5.00-5.45 5.00	SPT(C) N=43 B			8,9/11,9,11,12			.10)				
Remarks Groundwate	r encountered at 3.5	Om BGL.			36.69		5.60	Refusal at 5.60m	Scale (approx)		ogged
Refusal at 5. Slotted pipe 1.00m BGL t	60m BGL; obstruction	on possible BGL to 1 on upright	e hard st .50m BG cover.	rata or boulder. L with pea gravel filter	zone fror	m 5.60m∃	BGL t	to 1.00m BGL and bentonite seal and from	1:50 Figure N 9429-02	C. lo.	Byrne

Depth Sample / Tests Casing Water Field Records Casing Casing	Swords Road, Whiteha Ground Level (mOD) 42.71 Client Eastwise	Job Numb 9429-0
1.00-1.45 SPT(C) N=20 B 2.4/4,5.6,5 41.41 1.30	16/06/2020	Sheet
1.00-1.45 SPT(C) N=20 B C 2.4/4,5.6,5	Level Depth (mOD) (Thickness)	Legend
	41.41 1.30 41.41 1.30 Very stiff greyish brown with occasional subang limestone. Gravel is subcoarse. Very stiff dark grey/ blac CLAY with occasional s and boulders of predom subangular to subrounce to subrounce to subrounce to subrounce to subrounce to subangular to subrounce to subrou	gravelly CLAY obbles of ed fine to the ded cobbles avel is
terusar at 7.00m bgl., obstruction possible nard strata or boulder.		Scale (approx) Logge
		1:50 C. Byr Figure No.

	Grou	nd In		gations Ire w.gii.ie	land	Ltd	Site Swords Road, Whitehall	Borehole Number BH03	
Machine : Dando 2000 Method : Cable Percussion			Diamete 0mm to 7	r	Ground Level (mOD) 42.02		Factwice	Job Number 9429-02-20	
		Locatio 71		738118.9 N	Dates 17	7/06/2020	Project Contractor GII	Sheet 1/1	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness	Description)	Legend Salar	
1.00-1.45 1.00 2.00-2.45 2.00 3.00-3.45 3.00 4.00-4.45 4.00 5.00-5.34 5.00 6.00-6.21 6.00 7.00-7.07	SPT(C) N=12 SPT(C) N=31 SPT(C) N=41 SPT(C) N=44 SPT(C) 50/190 SPT(C) 50/60 SPT(C) 25*/70 50/0 B			1,2/2,3,3,4 4,7/7,7,8,9 4,10/11,10,10,10 8,9/9,9,15,11 7,14/15,21,14 16,23/50 25/50	39.72 34.62	(0.80)	MADE GROUND: Brown slightly sandy slightly gravelly Clay with broken brick fragments. Gravel is subangular to subrounded fine to coarse. Firm-stiff greyish brown slightly sandy slightly gravelly CLAY with occasional subangular to subrounded cobbles of limestone. Gravel is subangular to subrounded fine to coarse. Very stiff dark grey/ black slightly sandy slightly gravelly CLAY with occasional subangular to subrounded cobbles and boulders of predominantly limestone. Gravel is subangular to subrounded fine to coarse.		
Remarks No ground Refusal at 7	ater encountered du .40m BGL; obstructic	ring drillin	g. e hard str	ata or boulder			Scale (approx)	Logged By	
Borehole ba	.40m BGL; obstruction ckfilled upon completion 7.40m to 7.40m f	tion.		ata or boulder.			1:50	C. Byrne	
							Figure No. 9429-02	o. -20.BH03	

200mm to 74 PV 1.00	Ground Investigations Ireland Ltd							Site Swords Road, Whitehall	Borehole Number BH04	
Description	Method : Cable Percussion with Rotary Core follow on		20	0mm to 7	.40m	42.01 Dates 17/06/2020-			Number	
1.00					738088.6 N					
1.00 1.00 1.45 B SPT(C) N=9	Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend Nate	
2.00 2.45 BFT(C) N=23	1.00 1.00-1.45	B SPT(C) N=9			1,4/1,3,2,3	40.61		predominantly limestone. Gravel is subangular to subrounded fine to coarse.	x 0 x 0	
3.00 B SPT(C) N=38	2.00 2.00-2.45	B SPT(C) N=23			2,5/7,7,3,6		(1.10)	occasional subangular to subrounded cobbles and boulders of limestone. Gravel is subangular to subrounded fine to	6.00 6.00	
## A 00-4.40 SPT(C) 50/245 9,12/13,14,18,5	3.00 3.00-3.45	B SPT(C) N=38			5,5/8,9,8,13	39.51	2.50	and boulders of predominantly limestone. Gravel is		
5.00-5.22 SPT(C) 50/70 8.00 8.00 8.00-6.32 SPT(C) 50/170 8.07.00 7.00 7.00 7.00 7.00 100 100	4.00 4.00-4.40	B SPT(C) 50/245			9,12/13,14,18,5					
Remarks No groundwater encountered during cable percussion drilling. Cable percussion drilling to 7.40m for 1 hour. 20,22/17,26,7 20,22/17	5.00 5.00-5.22				16,24/50		(4.90)			
7.00-7.14 SPTIC) 33*/75 50/60 TCR SCR RQD FI U 34.61 7.40 Very stiff dark grey/ black slightly sandy slightly gravelly CLAY with occasional subangular to subrounded cobbles and boulders of predominantly limestone. Gravel is subangular to subrounded fine to coarse. Remarks No groundwater encountered during cable percussion drilling. Cable percusion drilling to 7.40m BGL with rotary follow on to 13.00m BGL. Borehole backfilled upon completion. Chiselling from 7.40m to 7.40m for 1 hour. SCAIL (approx) Scale (approx) 1:50 C. Byrne	6.00 6.00-6.32	B SPT(C) 50/170			20,22/17,26,7					
7.50 8.05-8.35 100 100 100 Remarks No groundwater encountered during cable percussion drilling. Cable percussion drilling to 7.40m BGL with rotary follow on to 13.00m BGL. Borehole backfilled upon completion. Chiselling from 7.40m to 7.40m for 1 hour.	7.00 7.00-7.14	SPT(C) 33*/75 50/60	ROD	FI	33/50					
8.05-8.35 100 9.00 Remarks No groundwater encountered during cable percussion drilling. Cable percusion drilling to 7.40m BGL with rotary follow on to 13.00m BGL. Borehole backfilled upon completion. Chiselling from 7.40m to 7.40m for 1 hour. subangular to subrounded fine to coarse. Scale (approx) Byged C. Byrne	7.50					34.61	7.40	Very stiff dark grey/ black slightly sandy slightly gravelly CLAY with occasional subangular to subrounded cobbles		
Remarks No groundwater encountered during cable percussion drilling. Cable percusion drilling to 7.40m BGL with rotary follow on to 13.00m BGL. Borehole backfilled upon completion. Chiselling from 7.40m to 7.40m for 1 hour. Scale (approx) By C. Byrne	8.05-8.35	100			U			subangular to subrounded fine to coarse.		
No groundwater encountered during cable percussion drilling. Cable percusion drilling to 7.40m BGL with rotary follow on to 13.00m BGL. Borehole backfilled upon completion. Chiselling from 7.40m to 7.40m for 1 hour. 1:50 C. Byrne	9.00	100								
Chiselling from 7.40m to 7.40m for 1 hour.	No groundw Cable percu Borehole ba	ackfilled upon comple	tion.		on drilling. low on to 13.00m BG	iL.		Scale (approx)	Logged By	
9429-02-20 BH04	Chiselling from	om 7.40m to 7.40m f	or 1 hour.					Figure N	No.	

GI		Ground Investigations Ireland Ltd www.gii.ie						Site Swords Road, Whitehall		Borehole Number BH04	
Machine : Dando 2000, Beretta T44 Casing Diameter G Flush : Polymer 200mm to 7.40m 148mm to 13.00m				r .40m	42.01		Client Eastwise		Job Number 9429-02-20		
Core Dia: 102 mm Method: Cable Percussion with Rotary Core follow on			Location 716718.8 E 738088.6 N				Project Contractor GII		Sheet 2/2		
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Pater Water	
10.50-10.80 10.50	100				U		(5.60)				
12.00	100										
Remarks						29.01	13.00	Complete at 13.00m	Ocale	<u>6-7-7-7-1</u>	
Remarks									Scale (approx)	Logged By	
									1:50	C. Byrne	
									Figure N 9429-02	lo. 2-20.BH04	

	Ground Investigations Ireland Ltd www.gii.ie							Site Swords Road, Whitehall	Borehole Number BH05	
Method : Cable Percussion			20	Diamete Omm to 7 8mm to 3	r .00m	41.45		Client Eastwise	Job Number 9429-02-20	
with Rotary Core follow on		Locatio	n (dGPS		Project Contractor GII			Sheet 1/4		
Depth (m)	Sample	/ Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend X	
1.00 1.00-1.45	B SPT(C)	N=15			2,2/3,3,4,5		(1.60)	Firm-stiff brown slightly sillty slightly sandy slightly gravelly CLAY with occasional subangular to subrounded cobbles of predominantly limestone. Gravel is subangular to subrounded fine to coarse.	X 0	
2.00 2.00-2.45	B SPT(C)	N=22			3,4/6,5,5,6	39.85 39.15	(0.70)	Stiff greyish brown slightly sandy slightly gravelly CLAY with occasional subangular to subrounded cobbles of limestone. Gravel is subangular to subrounded fine to coarse.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
3.00 3.00-3.45	B SPT(C)	N=38			6,7/8,9,11,10	39.10	2.30 	Very stiff dark grey/ black slightly sandy slightly gravelly CLAY with occasional subangular to subrounded cobbles and boulders of predominantly limestone. Gravel is subangular to subrounded fine to coarse.		
4.00 4.00-4.45	B SPT(C)	N=41			7,8/9,9,11,12					
5.00 5.00-5.34	B SPT(C)	50/190			10,11/19,18,13		(5.70)			
6.00 6.00-6.33	B SPT(C)	50/180			21,20/19,19,12					
7.00 7.00-7.07 7.00	TCR	SCR	RQD	FI	25/50 B SPT(C) 25*/70 50/0		E E E E E	7.00 to 8.00 No recovery		
8.00 8.30-8.70	100				U	33.45	8.00	Very stiff grey slightly sandy gravelly CLAY with occasional subangular to subrounded cobbles of predominantly limestone. Gravel is subangular to subrounded fine to coarse.		
9.50							(3.00)			
Remarks No groundw Cable percu Rotary core Borehole ba Chiselling fr	tollow on co ackfilled upo	omplete a on complet	t 37.00m tion	g. h rotary o BGL.	Irilling to 37.00m BGL	. .		Scale (approx) 1:50	Logged By C. Byrne	
								Figure N 9429-0	10. 2-20.BH05	

	Ground Investigations Ireland Ltd						Site Swords Road, Whitehall	Borehole Number BH05	
Flush : Polymer 200mm to 7.00m 148mm to 37.00m				r ′.00m		Ground Level (mOD) 41.45 Client Eastwise		Job Number 9429-02-20	
Core Dia: 102 mm Method : Cable Percussion with Rotary Core follow on			n (dGPS 6777.9 E) 738074.8 N	Dates 17/06/2020- 02/07/2020		Project Contractor GII	Sheet 2/4	
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness	Description	Legend Sta
	86					30.45			
11.00	90					29.90	(0.55)	Grey subangular to subrounded line to coarse GRAVEL.	
12.50 12.75-13.05	100				U		(2.45)		
14.00 14.60-15.00	97				U	27.45	14.00	Very stiff dark brown slightly sandy gravelly CLAY with occasional subangular to subrounded cobbles of predominantly limestone. Gravel is subangular to subrounded fine to coarse.	
15.50	86						(5.00)		
17.00 17.50-17.80	100				U				
18.50 18.80-19.05	10				U	22.45	19.00	Very stiff grey slightly sandy gravelly CLAY with some subangular to subrounded cobbles of predominantly limestone. Gravel is subangular to subrounded fine to coarse.	
20.00 Remarks								200	10000
								Scale (approx) 1:50	Logged By C. Byrne
								Figure 1 9429-0	No. 2-20.BH05

		Groui	nd In		gations Ire w.gii.ie	land	Ltd		Site Swords Road, Whitehall	Borehole Number BH05
Flush : P	44 olymer), Beretta	20	Diamete 0mm to 7 8mm to 3	.00m		Leve 41.45	l (mOD)	Client Eastwise	Job Number 9429-02-20
				n (dGPS 6777.9 E) 738074.8 N		7/06/2 2/07/2		Project Contractor GII	Sheet 3/4
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	(Thi	epth (m) ckness)	Description	Legend Nate
	100							(3.00)		
21.50										
22.00	100	24	24			19.45		22.00	Medium strong-strong thinly bedded-thickly laminated fine grained argillaceous LIMESTONE with rare mudstone beds. Partially weathered to unweathered. From 22.00 to 24.30 - 2 sets of fractures. F1: 40-50 degrees closely spaced planar smooth closed with occasional brown staining and clay smearing. F2: 5-15 degrees medium spaced undulating smooth closed	
23.00	100	70	70	8				(4.00)	with clay smearing.	
24.30									From 24.30 to 24.90 - Non Intact core	
24.50 24.90	100	56	56	7					From 24.90 to 26.00 - 1 set of fractures. F1: 40-50 degrees closely spaced planar smooth closed with occasional brown staining and clay smearing.	
26.00	100	0	0	N.I.		15.45		26.00	Medium strong-strong thinly bedded-thickly laminated fine grained argillaceous LIMESTONE with calcite veining interbedded with extremely weak-very weak black calcareous mudstone beds. Partially weathered to unweathered. From 26.00 to 27.80 - Non Intact core	
27.50 27.80	93	60	55						Frm 27.80 - 2 sets of fractures. F1: 40-50 degrees closely spaced planar smooth closed with occasional brown staining and clay smearing. F2: 5-15 degrees medium spaced undulating smooth closed with clay smearing.	
29.00	100	76	72							
Remarks	I	I.	I.	l	<u> </u>	1			Scale (approx)	Logged By
									1:50	C. Byrne
									Figure	1

		Groui	nd In		gations Irel w.gii.ie	land l	Ltd	Site Swords Road, Whitehall		Borehole Number BH05
Machine : D T Flush : P Core Dia: 1		, Beretta	20 14	Diamete 0mm to 7 8mm to 3	r .00m 7.00m		Level (mOD) 41.45	Eastwise		Job Number 9429-02-20
Method · C		ission Core		n (dGPS 6777.9 E) 738074.8 N	Dates 17 02	/06/2020- /07/2020	Project Contractor GII		Sheet 4/4
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Nater Nater
30.50										
	100	50	50				(11.00)			
32.00	100	45	45	10						
33.50	100	52	52							
35.00	100	55	55							
36.50 37.00	70	0	0			4.45	37.00	Complete at 37.00m		
								33pioc di 37.3011		
Remarks									Scale (approx)	Logged By
									1:50 Figure N 9429-02	C. Byrne o. -20.BH05

	Grou	nd In		gations Ire w.gii.ie	land	Ltd		Site Swords Road, Whitehall		N	orehole umber BH06
Machine: D	ando 2000 able Percussion	1	Diamete 0mm to 8			Level (m 41.64	OD)	Client Eastwise		N	ob umber 29-02-20
		Locatio 71		38068.6 N		7/06/2020 3/06/2020		Project Contractor GII		SI	heet 1/1
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Dept (m) (Thickn	h ess)	Description	Legend	Water	Instr
1.00-1.45 1.00	SPT(C) N=10 B			3,4/2,2,2,4	41.24		.40) 0.40	MADE GROUND: Black slightly sandy slightly gravelly Clay fill with brick and rubbish fragments. Gravel is subangular to subrounded fine to coarse. Firm brown slightly sillty slightly sandy slightly gravelly CLAY with occasional subangular to subrounded cobbles of predominantly limestone. Gravel is subangular to subrounded fine to coarse.	× · · · · · · · · · · · · · · · · · · ·		
2.00	В				39.14	E	2.50 .60)	Stiff greyish brown slightly sandy slightly gravelly CLAY with occasional subangular to subrounded cobbles of limestone. Gravel is subangular to	× × × × × × × × × × × × × × × × × × ×		
3.00-3.45 3.00	SPT(C) N=22 B			6,4/5,5,5,7	38.54	E `	3.10	Very stiff dark grey/ black slightly sandy slightly gravelly CLAY with occasional subangular to subrounded cobbles and boulders of predominantly limestone. Gravel is subangular to subrounded fine to coarse.			
4.00-4.45 4.00	SPT(C) N=41 B			4,8/8,10,11,12							
5.00-5.45 5.00	SPT(C) N=46 B			5,9/11,11,12,12			.90)				
6.00-6.33 6.00	SPT(C) 50/180 B			14,22/18,20,12							
7.00-7.14 7.00	SPT(C) 31*/75 50/60 B			31/50							
8.00-8.07 8.00	SPT(C) 25*/70 50/0 B			25/50	33.64		3.00	Refusal at 8.00m	~ O , pa		
Remarks No groundwa Refusal at 8. Slotted pipe BGL to GL. f	ater encountered dui 00m BGL; obstructic installed from 8.00m inished with an uprid	ring drillin on possibl BGL to 1	g. e hard sti .50m BG	ata or boulder. L with pea gravel filter	zone fror	m 8.00m	BGL t	to 1.00m BGL and bentonite seal from 1.00m	Scale (approx)		ogged y Byrne
Chiselling fro	om 8.00m to 8.00m fo	or 1 hour.							Figure N 9429-02	lo.	-

Machine: Da		Casing			Ground	Level (mOD) 40.96	Swords Road, Whitehall Client Eastwise	Number BH07 Job Number 9429-02-2
		Location 716		738044.8 N		7/06/2020- 8/06/2020	Project Contractor GII	9429-02-2 Sheet 1/1
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
1.00-1.45 1.00 2.00-2.45 2.00 3.00-3.45 3.00 4.00-4.45 4.00 5.00-5.40 5.00 6.00-6.27 6.00 7.00-7.07	SPT(C) N=17 SPT(C) N=25 SPT(C) N=15 SPT(C) N=43 SPT(C) 50/245 SPT(C) 50/115 SPT(C) 25*/70 50/0 B			1,4/4,5,3,5 3,4/6,6,7,6 3,3/3,4,4,4 8,8/11,7,13,12 9,11/14,14,13,9 17,20/26,24 25/50	39.86 38.56	2.40 2.40 4.60)	Firm brown slightly sillty slightly sandy slightly gravelly CLAY with occasional subangular to subrounded cobbles of predominantly limestone. Gravel is subangular to subrounded fine to coarse. Stiff greyish brown slightly sandy slightly gravelly CLAY with occasional subangular to subrounded cobbles of limestone. Gravel is subangular to subrounded fine to coarse. Very stiff dark grey/ black slightly sandy slightly gravelly CLAY with occasional subangular to subrounded cobbles and boulders of predominantly limestone. Gravel is subangular to subrounded fine to coarse.	
Remarks No groundwa Refusal at 7.0	ater encountered du 00m BGL; obstructio	ring drilling	g. e hard str	rata or boulder.		<u> </u>	Scale (approx)	Logged By
Borehole bac Chiselling fro	ckfilled upon comple om 7.00m to 7.00m f	tion. or 1 hour.					1:50	C. Byrne
							Figure I	No. 2-20.BH07

	Grou	nd In		gations Ire w.gii.ie	land	Ltd		Site Swords Road, Whitehall	Borehole Number BH08
Machine : D	ando 2000 able Percussion		Diamete 0mm to 7	r		Level (m0 40.88	OD)	Client Eastwise	Job Number 9429-02-20
		Locatio 71		738036.1 N	Dates 25	5/06/2020		Project Contractor GII	Sheet 1/1
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickne	ı ss)	Description	Legend Nate
						(1.1	10)	MADE GROUND: Brown slightly sandy slightly slity slightly gravelly Clay with occasional subangular to subrounded cobbles of predominantly limestone and red brick fragments. Gravel is subangular to subrounded fine to coarse.	
1.00-1.45 1.00	SPT(C) N=7 B			1,1/2,1,2,2	39.78	1.	10	Firm greyish brown slightly sandy slightly gravelly CLAY with occasional subangular to subrounded cobbles of limestone. Gravel is subangular to subrounded fine to coarse.	0.000 6.000
2.00-2.45 2.00	SPT(C) N=9 B			3,2/2,3,3,1		= = = = = = = = (3.2	20)		6 0 4 0 0 4 0 0 4 0 0 4
3.00-3.45 3.00	SPT(C) N=14 B			2,4/2,4,4,4					0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4.00-4.45 4.00	SPT(C) N=36 B			11,5/6,7,10,13	36.58		30	Very stiff dark grey/ black slightly sandy slightly gravelly CLAY with occasional subangular to subrounded cobbles and boulders of predominantly limestone. Gravel is subangular to subrounded fine to coarse.	
5.00-5.34 5.00	SPT(C) 50/190 B			16,13/12,17,21		(2.7	70)		
6.00-6.07 6.00	SPT(C) 25*/0 50/70 B			25/50					\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
7.00-7.15 7.00	SPT(C) 33*/75 50/70 B			33/50	33.88	7.	000	Refusal at 7.00m	A
Remarks No Groundw Refusal at 7 Borehole ba	vater encountered du .00m BGL; obstruction ckfilled upon comple om 7.00m to 7.00m f	uring drillir on possibletition.	ng. e hard str	rata or boulder.				Scale (approx) Logged By C. Byrne
omocinity it	ын <i>т</i> .оонн ю <i>Т</i> .оонн I	or riiour.						Figure	

	ando 2000 able Percussion	Casing 20	WW Diamete 0mm to 7	.20m	Ground			Swords Road, Whitehall Client Eastwise	Job Number
	th Rotary Core llow on	Locatio	8mm to 3 n (dGPS 6872.7 E			2/06/20		Project Contractor GII	9429-02-2 Sheet 1/4
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	De (Thic	epth m) kness)	Description	Legend
.00 .00-1.07	B SPT(C) 25*/0 50/70			25/50			(1.80)	MADE GROUND: Dark grey slightly sandy slightly silty slightly gravelly Clay with occasional subangular to subrounded cobbles of limestone, concrete, red brick and tarmac fragments. Gravel is subangular to subrounded fine to coarse.	
.00 .00-2.45	B SPT(C) N=9			2,2/2,2,2,3	38.49 37.99 37.79		1.80 (0.50) 2.30 (0.20) 2.50	MADE GROUND: Dark grey/ black slightly sandy slightly gravelly Clay with occasional subangular to subrounded cobbles of limestone, mortar and plastic fragments. Gravel is subangular to subrounded fine to coarse. Firm greyish brown slightly sandy slightly gravelly CLAY with occasional subangular to subrounded cobbles of limestone. Gravel is subangular to subrounded fine to	10 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3.00 3.00-3.45	B SPT(C) N=22			4,6/6,6,6,4	36.79		(1.00)	coarse. Stiff dark grey/ black slightly sandy slightly gravelly CLAY with occasional subangular to subrounded cobbles and boulders of predominantly limestone. Gravel is subangular to subrounded fine to coarse.	
.00 .00-4.45	0 - B SPT(C) N=49			6,8/12,12,13,12	00.00		0.00	Very stiff dark grey/ black slightly sandy slightly gravelly CLAY with occasional subangular to subrounded cobbles and boulders of predominantly limestone. Gravel is subangular to subrounded fine to coarse.	
.00 .00-5.35	B SPT(C) 68/200			8,18/18,22,28					
.00 .00-6.20	B SPT(C) 50/50			29,37/50					
.00 .00-7.07	B 50/70 SPT(C) 34*/0 TCR SCR	RQD	FI	34/50				7.20m to 8.00m no recovery	
.00	0 -								
.65-10.00	93 -			U			(40.00)		
.50							(12.00)		0° 9 0° 9 5° 0
o Groundwa	.00m BGL due to dater encountered d	luring drillir	ıg.	ollow or to 04 00 . S	nCI			Scale (approx)	Logged By
orehole bac	sion drilling to 7.2 kfilled upon comp m 7.20m to 7.20m	etition.	•	ollow on to 34.00m B	BGL.			1:50	C. Byrne

		Groui	nd In	vesti ww	gations Irel w.gii.ie	land l	Ltd	Site Swords Road, Whitehall		Borehole Number BH09
Machine: D		0		Diamete 0mm to 7 8mm to 3	r		Level (mOD) 40.29	Client Eastwise		Job Number 9429-02-20
Core Dia: n				n (dGPS		Dates		Project Contractor		Sheet
	able Perc ith Rotary llow on	ussion Core			738108.8 N	22 02	/06/2020- /07/2020	GII		2/4
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend Age
11.00	100	-								
11.70-12.00	100	-			U					
12.50	100	-								
14.00 14.40-14.70	100	-			U					
15.50	100	-				24.79	15.50	Very stiff brown slightly sandy gravelly CLAY with subangular to subrounded cobbles of predomina limestone. Gravel is subangular to subrounded f coarse.	n some intly ine to	
17.00	100	-								
18.50 19.70-20.00 20.00	100	-			U					
Remarks									Scale (approx)	Logged By
									1:50 Figure N	C. Byrne

		Grou	nd In		igations Ire vw.gii.ie	land	Ltd	Site Swords Road, Whitehall		Boreho Numbe BH09	r
Machine : Da		00	20	Diamete Omm to 7 8mm to 3	r 7.20m		Level (mOD) 40.29	Client Eastwise		Job Numbe 9429-02-	
Core Dia: m Method : Ca wi fo		cussion / Core		on (dGPS	5) E 738108.8 N		2/06/2020- 2/07/2020	Project Contractor GII		Sheet 3/4	
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend	Water
20.30-20.70 21.15-21.45	93	-			U		(9.00)				
21.50	80	-									
	93	-				15.79	=				
24.50	100	-				14.59	(1.20)	Grey slightly sandy slightly clayey subangular to subrounded fine to coarse GRAVEL with many s to subrounded cobbles of predominantly limesto Very stiff dark grey slightly sandy gravelly CLAY subangular to subrounded cobbles of predomina limestone. Gravel is subangular to subrounded f			
26.00 27.40-27.90	83	-			U			limestone. Gravel is subangular to subrounded f coarse.	ne to		
27.50	100	-									
29.00	100	-									
Remarks									Scale (approx)	Logged By	ı
									1:50	C. Byrne	э
									Figure N 9429-02	o. 2-20.BH09	,

		Groui	nd In		gations Irel w.gii.ie	land l	Ltd	Site Swords Road, Whitehall	Borehole Number BH09
Machine : D Flush : Core Dia: n)	200	Diamete 0mm to 7 8mm to 3	r 20m		Level (mOD) 40.29	Eacturica	Job Number 9429-02-20
Method : C		ıssion Core		n (dGPS 6872.7 E) 738108.8 N	Dates 22 02	/06/2020- /07/2020	Project Contractor GII	Sheet 4/4
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend Nate
30.50	100	-							
32.00	100	27	27			7.99	32.30	Medium strong to strong thinly bedded-thickly laminated fine grained grey argillaceous LIMESTONE interbbeded with weak black calcareous mudstone. Partially weathered. 2 sets of fractures. F1: 40-50 degrees very closely to closely spaced planar smooth closed with occasional clay smearing. F2: 30-40 degrees very closely to closely spaced undulating to planar smooth to rough closed.	
33.50 34.00	100	78	78			6.29	34.00	Complete at 34.00m	
Neillai RS								Scale (approx) 1:50 Figure N 9429-02	C. Byrne o. 4-20.BH09

	Grou	nd In		gations Ire w.gii.ie	land	Ltd	Site Swords Road, Whitehall		N	orehole umber 3H10
Machine: D	ando 2000 able Percussion		Diamete 0mm to 7			Level (mOD) 39.90	Client Eastwise		N	ob umber 29-02-20
		Locatio 71		738078.8 N	Dates 23	5/06/2020	Project Contractor GII		S	heet 1/1
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
1.00-1.45 1.00 2.00-2.45 2.00 3.00-3.45 3.00 4.00-4.45 4.00 5.00-5.45 5.00 6.00-6.27 6.00 7.00-7.06 7.00	SPT(C) N=10 SPT(C) N=7 SPT(C) N=30 SPT(C) N=44 SPT(C) N=50 SPT(C) 50/115 SPT(C) 25*/0 50/60 B			1,1/1,3,3,3 2,2/1,1,2,3 3,4/6,6,9,9 7,9/9,11,11,13 8,10/12,12,12,14 16,16/23,27	38.40 37.40	1.50	MADE GROUND: brown slightly sandy slightly gravelly Clay with red brick fragments. Gravel is subangular to subrounded fine to coarse. Soft to firm greyish brown slightly sandy slightly gravelly CLAY with occasional subangular to subrounded fine to coarse. Very stiff dark grey/ black slightly sandy slightly gravelly CLAY with occasional subangular to subrounded cobbles and boulders of predominantly limestone. Gravel is subangular to subrounded fine to coarse.			
Slotted pipe BGL to GL. f	rater encountered du 20m BGL; obstructic installed from 7.20m inished with an uprig om 7.20m to 7.20m fo	BGL to 1 ht cover.	g. e hard str .50m BGI	ata or boulder. _ with pea gravel filter	r zone fron	n 7.20m BGL	to 1.00m BGL and bentonite seal from 1.00m	Scale (approx) 1:50 Figure N 9429-0	C.	ogged y . Byrne

BH04 - 7.50 to 10.50 m BGL

BH04 - 10.50 to 13.00m BGL

BH05 - 7.00 to 12.50m BGL

BH05 - 12.50 to 17.00m BGL

BH05 - 17.00 to 21.50m BGL

BH05 - 21.50 to 26.00m BGL

BH05 - 26.00 to 30.50m BGL

BH05 - 30.50 to 35.00m BGL

BH05 - 35.00 to 37.00m BGL

BH09 - 7.20 to 12.50m BGL

BH09 - 12.50 to 17.00m BGL

BH09 - 17.00 to 21.50m BGL

BH09 - 21.50 to 26.00m BGL

BH09 - 26.00 to 30.50m BGL

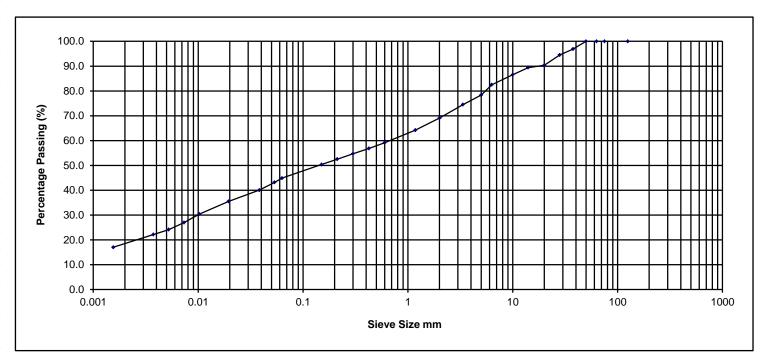
BH09 - 30.50 to 34.00m BGL

APPENDIX 6 – Laboratory Testing

				Particle			Index Pro	perties	Bulk	Cell	Undrained Tria	xial Tests	Lab	
BH/TP	Depth	sample	Moisture	Density	<425um	LL	PL	PI	Density	Presssure	Compressive	Strain at	Vane	Remarks
No	m	No.	%	Mg/m3	%	%	%	%	Mg/m3	kPa	Stress kPa	Failure %	kPa	
TP01	0.70	Т	13.9											
TP01	1.60	Т	14.1		56.8	30	21	9						
TP01	2.40	B/T	9.3											
TP02	0.50	Т	15.2											
TP02	1.50	В	16.0		61.7	28	19	9						
TP02	2.70	Т	8.2											
TP03	0.50	Т	32.4											
TP03	1.80	Т	11.5											
TP03	2.70	В	14.5		54.3	30	16	14						
TP04	0.50	Т	14.4		45.1	39	21	18						
TP04	1.80	Т	12.7											
TP05C	0.90	Т												missing
TP05C	2.00	Т	10.9											
TP05C	2.90	Т	15.1											
TP06	0.60	Т	14.5		44.5	37	20	17						
TP06	1.50	Т	12.4											
TP06	2.70	Т	11.9											
TP06	3.70	Т	11.9											
TP07	0.70	Т	35.3		71.4	49	29	20						
TP07	1.40	Т	19.6											
TP07	3.30	B/T	15.3											
TP08	0.70	B/T	14.6		64.8	40	23	17						
TP08	1.50	Т	11.4											
TP08	2.80	Т	10.4											
TP09	1.90	B/T	12.6		61.2	29	18	11						
TP09	2.80	Т	8.8											
NMTL		Notes :									Job ref No.	NMTL 3243	GII Project ID	9255-11-19
19/08/2020			1. All BS to	ests carried	l out using p	referred (definitive) ı	method ur	nless otherw	ise stated.	Location	Whitehall,	Swords	

				Particle			Index Pro	perties	Bulk	Cell	Undrained Tria	xial Tests	Lab	
BH/TP	Depth	sample	Moisture	Density	<425um	LL	PL	PI	Density	Presssure	Compressive	Strain at	Vane	Remarks
No	m	No.	%	Mg/m3	%	%	%	%	Mg/m3	kPa	Stress kPa	Failure %	kPa	
TP10	0.50	В	18.4		55.1	35	23	12						
TP10	1.40	Т	14.68											
TP10	2.80	Т	9.51											
BH01	1.00	В	19.6											
BH01	2.00	В	15.0		65.2	32	17	15						
BH01	3.00	В	14.2											
BH01	4.00	В	14.4											
BH01	5.00	В	14.8											
BH02	1.00	В	16.7											
BH02	2.00	В	14.3											
BH02	3.00	В	10.2											
BH02	4.00	В	11.9											
BH02	5.00	В	11.1		65.8	28	15	13						
BH02	6.00	В	14.0		57.8	28	14	14						
BH02	7.00	В	8.9											
BH03	1.00	В	13.7											
BH03	2.00	В	14.6		58.9	31	16	15						
BH03	3.00	В	12.0											
BH03	4.00	В	11.6											
BH03	5.00	В	13.1		63.7	29	14	15						
BH03	6.00	В	11.1											
BH03	7.00	В	9.6											
BH04	1.00	В	13.2											
BH04	2.00	В	14.5											
BH04	3.00	В	12.7											
NMTL		Notes :									Job ref No.	NMTL 3243	GII Project ID	9255-11-19
19/08/2020			1. All BS tests carried out using preferred (definitive) method unless otherwise							ise stated.	Location	Whitehall,	Swords	

				Particle			Index Pro	perties	Bulk	Cell	Undrained Triax	kial Tests	Lab	
BH/TP	Depth	sample	Moisture	Density	<425um	LL	PL	PI	Density	Presssure	Compressive	Strain at	Vane	Remarks
No	m	No.	%	Mg/m3	%	%	%	%	Mg/m3	kPa	Stress kPa	Failure %	kPa	
BH04	4.00	В	9.7											
BH04	5.00	В	12.6											
BH04	6.00	В	11.6											
BH04	7.00	В	12.1											
BH04	10.5-10.9	С	9.3		59.6	34	17	17						
BH05	1.00	В	17.8		51.7	38	20	18						
BH05	2.00	В	14.3		57.8	30	15	15						
BH05	3.00	В	12.2											
BH05	4.00	В	13.4		50.7	29	15	14						
BH05	5.00	В	10.4											
BH05	6.00	В	12.0											
BH05	7.00	В	13.9											
BH05	8.3-8.7	С	7.8		51.4	32	18	14						
BH05	14.6-15.0	С	9.9		66.2	33	18	15						
BH06	1.00	В	24.7											
BH06	2.00	В	14.5											
BH06	3.00	В	11.2											
BH06	4.00	В	12.6											
BH06	5.00	В	12.0											
BH06	6.00	В	10.6											
BH06	7.00	В	12.2		59.5	28	14	14						
BH06	8.00	В	9.5											
BH07	1.00	В	18.4											
BH07	2.00	В	19.1											
BH07	3.00	В	12.9											
BH07	4.00	В	11.7											
IMTL		Notes :									Job ref No.	NMTL 3243	GII Project ID	9255-11-19
19/08/2020)[1. All BS te	ests carried	out using p	referred	(definitive) r	method ur	nless otherw	ise stated.	Location	Whitehall,	Swords	


				Particle			Index Pro	perties	Bulk	Cell	Undrained Triax	xial Tests	Lab	
BH/TP	Depth	sample	Moisture	Density	<425um	LL	PL	PI	Density	Presssure	Compressive	Strain at	Vane	Remarks
No	m	No.	%	Mg/m3	%	%	%	%	Mg/m3	kPa	Stress kPa	Failure %	kPa	
BH07	5.00	В	12.6											
BH07	6.00	В	11.0											
BH07	7.00	В	14.5		57.2	29	15	14						
BH08	1.00	В	21.5											
BH08	2.00	С	29.9		76.9	46	24	22						
BH08	3.00	В	14.5											
BH08	4.00	В	13.7											
BH08	5.00	В	10.6											
BH08	6.00	В	15.4											
BH08	7.00	В	13.5											
BH09	3.00	В	12.4		53.9	28	14	14						
BH09	4.00	В	11.4											
BH09	5.00	В	12.0		59.2	28	15	13						
BH09	6.00	В	12.3											
BH09	7.00	В	13.7											
BH09	9.65-10.0	С	7.6		48.9	34	18	16						
BH09	14.6-15.0	С	10.7		85.6	32	16	16						
BH10	2.00	В	11.0											
BH10	3.00	В	12.9		55.8	28	16	12						
BH10	4.00	В	11.7											
BH10	5.00	В	15.2											
BH10	6.00	В	11.0											
BH10	7.00	В	8.2											
NMTL		Notes :					ļ				Job ref No.	NMTI 3243	GII Project ID	9255-11-19
19/08/2020		110163 .	1 All BS +c	ete carriad	out using p	referred (definitive) r	nethod un	less otherw	rica etatad	Location	Whitehall,		3233-11-19

NMTL LTD Contract: Whitehall, Swords Unit 18c, Tullow Industrial Estate Client: **Ground Investigations Ireland Ltd** Tullow Engineer: Mike Sutton **County Carlow** GII Project ID 9255-11-19 Date: 19/08/2020 Tel: 00353 59 9180822 Tzr/Sb/Ms Tested By: Checked: Bc Mob: 00353 872575508 Job ref No. **NMTL 3243** billa@nmtl.ie High 50-70 Very High Extremely High Low Intermediate 70 0-35 70-90 90 + 35-50 60 Plasticity Index 50 40 30 20 10 0 20 40 60 80 100 120 0 **Liquid Limit**

Sieve	%
Size mm	Passing
125.000	100.0
75.000	100.0
63.000	100.0
50.000	100.0
37.500	96.9
28.000	94.5
20.000	90.4
14.000	89.4
10.000	86.6
6.300	82.5
5.000	78.3
3.350	74.5
2.000	69.1
1.180	64.2
0.600	59.1
0.425	56.8
0.300	54.7
0.212	52.5
0.150	50.4
0.063	44.9
0.053	43.2
0.038	40.1
0.019	35.5
0.010	30.4
0.007	27.0
0.005	24.1
0.004	22.2
0.002	17.0

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

Clay	Fine	Medium Coarse	Fine Medium	Coarse	Fine	Medium Coarse	Cobbles	Boulder
		Silt	Sand			Gravel		
17.0		27.8	24.2			30.9	0.0	0.0

NM

TL

Ltd

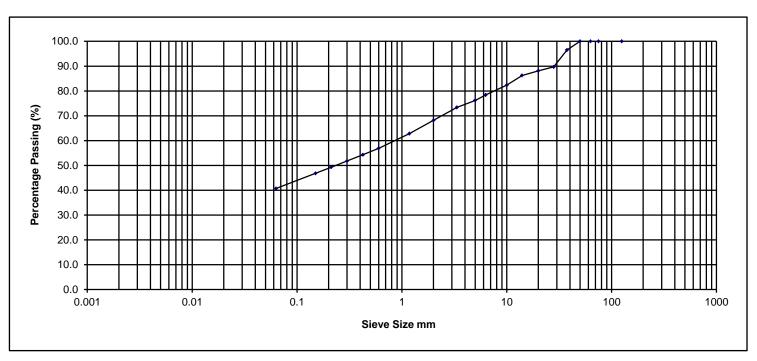
Operator

Sample Description Brown slightly sandy slightly gravelly silty CLAY.

Project No. BH/TP No.

NMTL 3243 TP01

Project		Whitehall, Sw	rords			GII Project ID-	9225-11-19	Sample
Tzr	Checked	Nc	Approved	Вс	Date sam	ple tested	08/08/2020	Depth


Sample No.

В 1.60m

Sieve	%
Size mm	Passing
125.000	100.0
75.000	100.0
63.000	100.0
50.000	100.0
37.500	96.5
28.000	89.7
20.000	88.1
14.000	86.3
10.000	82.3
6.300	78.4
5.000	76.2
3.350	73.4
2.000	68.1
1.180	62.8
0.600	56.9
0.425	54.3
0.300	51.8
0.212	49.3
0.150	46.8
0.063	40.7
,	

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

Cla	y Fine	Medium Coarse	Fine Medium	Coarse	Fine	Medium Coarse	Cobbles	Boulder
		Silt	Sand			Gravel		
		40.7	27.5			31.9	0.0	0.0

NM

TL

Ltd

Operator

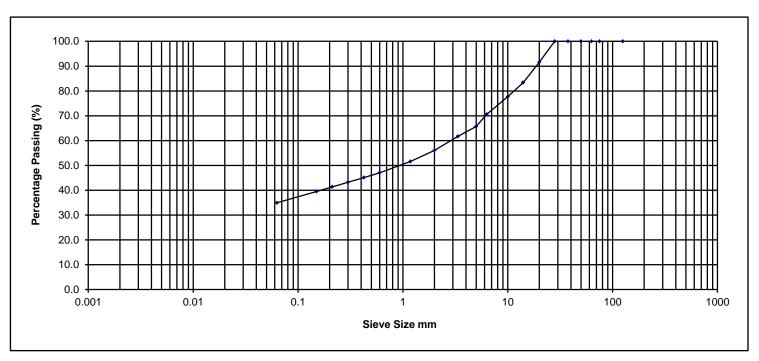
Sample Description Grey slightly sandy slightly gravelly SILT/CLAY.

Project No. BH/TP No.

NMTL 3243 TP03

Project Whitehall, Swords GII Project ID-9225-11-19

Tzr Checked Nc Approved Bc Date sample tested 04/06


11-19 Sample No. 04/08/2020 Depth

lo. B 2.70m

Sieve	%				
Size mm	Passing				
125.000	100.0				
75.000	100.0				
63.000	100.0				
50.000	100.0				
37.500	100.0				
28.000	100.0				
20.000	91.6				
14.000	83.4				
10.000	77.7				
6.300	70.6				
5.000	65.7				
3.350	61.7				
2.000	56.1				
1.180	51.6				
0.600	47.0				
0.425	45.1				
0.300	43.2				
0.212	41.4				
0.150	39.5				
0.063	34.9				

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

Cla	y Fine	Medium Coarse	Fine Medium C	Coarse	Fine	Medium Coarse	Cobbles	Boulder
		Silt	Sand			Gravel		
		34.9	21.1			43.9	0.0	0.0

NM

TL

Ltd

Operator

Sample Description Light brown/grey slightly sandy gravelly SILT/CLAY.

Project No. BH/TP No.

NMTL 3243 TP04

Whitehall, Swords Project GII Project ID-9225-11-19 Checked Date sample tested 08/08/2020 Depth Tzr Nc Approved Bc

Sample No.

Т 0.50m

Sieve	%
Size mm	Passing
125.000	100.0
75.000	94.1
63.000	94.1
50.000	90.6
37.500	87.2
28.000	83.2
20.000	79.5
14.000	74.6
10.000	71.7
6.300	66.7
5.000	63.1
3.350	59.5
2.000	53.8
1.180	49.6
0.600	46.1
0.425	44.5
0.300	42.9
0.212	41.3
0.150	39.6
0.063	35.4

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

Cla	y Fine	Medium Coarse	Fine Medium Coarse	Fine Medium Coarse	Cobbles	Boulder
		Silt	Sand	Gravel		
		35.4	18.3	40.3	5.9	0.0

NM

TL

Ltd

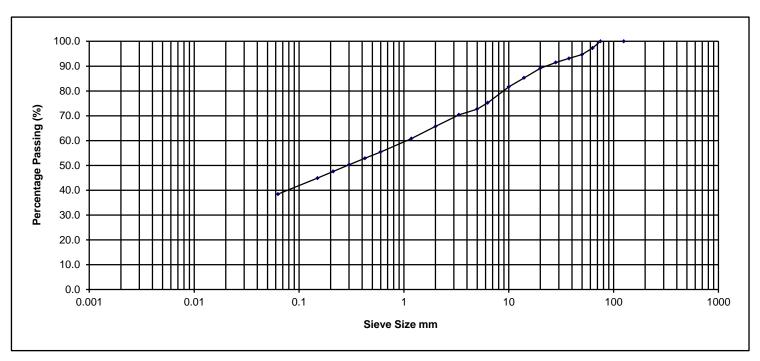
Operator

Sample Description Light brown/grey slightly sandy gravelly SILT/CLAY, with some cobbles.

Project No. BH/TP No. NMTL 3243 TP06

Whitehall, Swords Project GII Project ID-9225-11-19 Date sample tested Tzr Checked Nc Approved Bc

Sample No.


05/08/2020 Depth

В 0.60m

Sieve	%
Size mm	Passing
125.000	100.0
75.000	100.0
63.000	97.3
50.000	94.7
37.500	93.1
28.000	91.5
20.000	89.2
14.000	85.3
10.000	81.7
6.300	75.3
5.000	72.7
3.350	70.4
2.000	65.7
1.180	60.8
0.600	55.4
0.425	52.9
0.300	50.3
0.212	47.6
0.150	44.9
0.063	38.4

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

Cla	y Fine	Medium Coarse	Fine Medium	Coarse	Fine	Medium Coarse	Cobbles	Boulder
		Silt	Sand			Gravel		
		38.4	27.3			31.6	2.7	0.0

NM

TL

Ltd

Operator

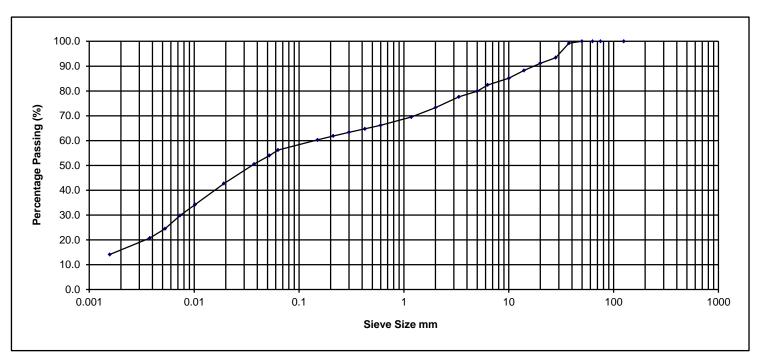
Sample Description Light brown slightly sandy slightly gravelly SILT/CLAY, with occasional cobbles.

Project No. BH/TP No. NMTL 3243 TP07

Project Whitehall, Swords

Tzr Checked Nc Approved Bc

GII Project ID-9225-11-19
Date sample tested 06/0


11-19 Sample No. 06/08/2020 Depth

B 3.30m

Sieve	%
Size mm	Passing
125.000	100.0
75.000	100.0
63.000	100.0
50.000	100.0
37.500	99.3
28.000	93.4
20.000	91.1
14.000	88.3
10.000	85.1
6.300	82.4
5.000	79.9
3.350	77.6
2.000	73.3
1.180	69.5
0.600	66.2
0.425	64.8
0.300	63.4
0.212	61.9
0.150	60.3
0.063	56.2
0.052	54.0
0.037	50.6
0.019	42.7
0.010	34.2
0.007	29.8
0.005	24.5
0.004	20.7
0.002	14.1
A/R/I	

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

Clay	Fine	Medium Coarse	Fine Medium	Coarse	Fine	Medium Coarse	Cobbles	Boulder
		Silt	Sand			Gravel		
14.1		42.1	17.1			26.7	0.0	0.0

Date sample tested

NM

TL

Ltd

Operator

Sample Description Brown slightly sandy slightly gravelly silty CLAY.

Project No. BH/TP No.

NMTL 3243 TP08

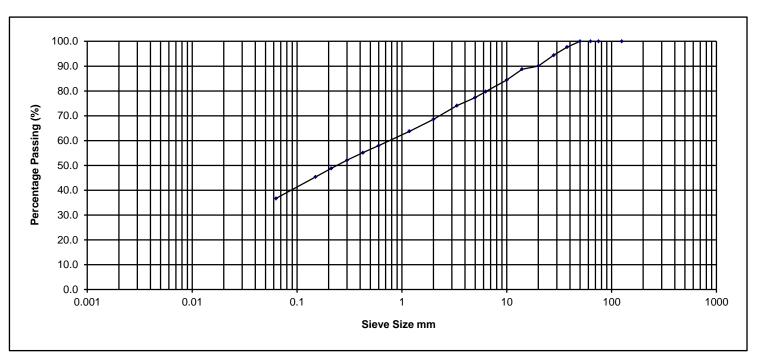
В

0.70m

Project Whitehall, Swords

Tzr Checked Nc Approved Bc

GII Project ID-9225-11-19


Sample No.

04/08/2020 Depth

Sieve	%
Size mm	Passing
125.000	100.0
75.000	100.0
63.000	100.0
50.000	100.0
37.500	97.6
28.000	94.4
20.000	90.1
14.000	88.7
10.000	84.4
6.300	79.8
5.000	77.4
3.350	74.1
2.000	68.6
1.180	63.8
0.600	58.0
0.425	55.1
0.300	52.1
0.212	48.8
0.150	45.4
0.063	36.7

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

Cla	/ Fine	Medium Coarse	Fine Medium	Coarse	Fine	Medium Coarse	Cobbles	Boulder
		Silt	Sand			Gravel		
		36.7	31.9			31.4	0.0	0.0

NM

TL

Ltd

Operator

Sample Description Light brown slightly gravelly slightly sandy SILT/CLAY.

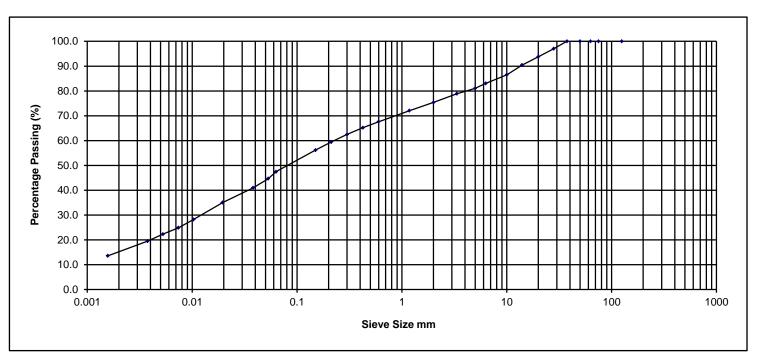
Project No. BH/TP No.

NMTL 3243 TP10

0.50m

Whitehall, Swords Project Date sample tested Tzr Checked Nc Approved Bc

GII Project ID-9225-11-19 07/08/2020 Depth


Sample No.

В

Sieve	%
Size mm	Passing
125.000	100.0
75.000	100.0
63.000	100.0
50.000	100.0
37.500	100.0
28.000	97.0
20.000	93.8
14.000	90.4
10.000	86.5
6.300	83.1
5.000	81.0
3.350	78.9
2.000	75.4
1.180	72.1
0.600	67.6
0.425	65.2
0.300	62.5
0.212	59.4
0.150	56.2
0.063	47.5
0.053	44.6
0.038	41.0
0.019	35.0
0.010	28.3
0.007	24.9
0.005	22.3
0.004	19.5
0.002	13.6
NM	

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

	Clay	Fine I	Medium Coarse	Fine Medium	Coarse	Fine	Medium Coarse	Cobbles	Boulder
			Silt	Sand			Gravel		
L	13.6		33.9	27.9			24.6	0.0	0.0

Camp

Sample Description Light brown, orange grey slightly gravelly silty CLAY.

Project No. BH/TP No.

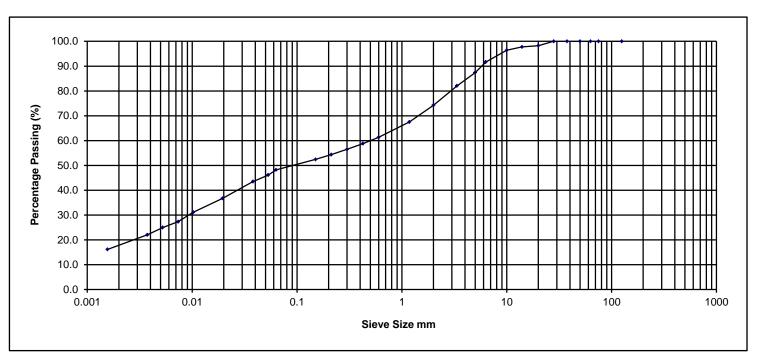
NMTL 3243

TL

Ltd

	Project	Į.
Operator	Tzr	Checked

roject Whitehall, Swords GII Project ID-9225-11-19


zr Checked Nc Approved Bc Date sample tested 01/08

11-19 Sample No. 01/08/2020 Depth BH01 B 2.0m

Size mm Passing 125.000 100.0 75.000 100.0 63.000 100.0 50.000 100.0 37.500 100.0 28.000 100.0 20.000 98.3 14.000 97.8 10.000 96.4 6.300 91.7 5.000 87.4 3.350 82.1 2.000 74.3 1.180 67.5 0.600 61.3 0.425 58.8 0.200 56.5	Sieve	%
75.000 100.0 63.000 100.0 50.000 100.0 37.500 100.0 28.000 100.0 20.000 98.3 14.000 97.8 10.000 96.4 6.300 91.7 5.000 87.4 3.350 82.1 2.000 74.3 1.180 67.5 0.600 61.3 0.425 58.8	Size mm	Passing
63.000 100.0 50.000 100.0 37.500 100.0 28.000 100.0 20.000 98.3 14.000 97.8 10.000 96.4 6.300 91.7 5.000 87.4 3.350 82.1 2.000 74.3 1.180 67.5 0.600 61.3 0.425 58.8	125.000	100.0
50.000 100.0 37.500 100.0 28.000 100.0 20.000 98.3 14.000 97.8 10.000 96.4 6.300 91.7 5.000 87.4 3.350 82.1 2.000 74.3 1.180 67.5 0.600 61.3 0.425 58.8	75.000	100.0
37.500 100.0 28.000 100.0 20.000 98.3 14.000 97.8 10.000 96.4 6.300 91.7 5.000 87.4 3.350 82.1 2.000 74.3 1.180 67.5 0.600 61.3 0.425 58.8	63.000	100.0
28.000 100.0 20.000 98.3 14.000 97.8 10.000 96.4 6.300 91.7 5.000 87.4 3.350 82.1 2.000 74.3 1.180 67.5 0.600 61.3 0.425 58.8	50.000	100.0
20.000 98.3 14.000 97.8 10.000 96.4 6.300 91.7 5.000 87.4 3.350 82.1 2.000 74.3 1.180 67.5 0.600 61.3 0.425 58.8	37.500	100.0
14.000 97.8 10.000 96.4 6.300 91.7 5.000 87.4 3.350 82.1 2.000 74.3 1.180 67.5 0.600 61.3 0.425 58.8	28.000	100.0
10.000 96.4 6.300 91.7 5.000 87.4 3.350 82.1 2.000 74.3 1.180 67.5 0.600 61.3 0.425 58.8	20.000	98.3
6.300 91.7 5.000 87.4 3.350 82.1 2.000 74.3 1.180 67.5 0.600 61.3 0.425 58.8	14.000	97.8
5.000 87.4 3.350 82.1 2.000 74.3 1.180 67.5 0.600 61.3 0.425 58.8	10.000	96.4
3.350 82.1 2.000 74.3 1.180 67.5 0.600 61.3 0.425 58.8	6.300	91.7
2.000 74.3 1.180 67.5 0.600 61.3 0.425 58.8	5.000	87.4
1.180 67.5 0.600 61.3 0.425 58.8	3.350	82.1
0.600 61.3 0.425 58.8	2.000	74.3
0.425 58.8	1.180	67.5
	0.600	61.3
0.200 56.5	0.425	58.8
0.300 56.5	0.300	56.5
0.212 54.4	0.212	54.4
0.150 52.4	0.150	52.4
0.063 48.2	0.063	48.2
0.053 46.1	0.053	46.1
0.038 43.5	0.038	43.5
0.019 36.7	0.019	36.7
0.010 31.2	0.010	31.2
0.007 27.3	0.007	27.3
0.005 25.0	0.005	25.0
0.004 22.0	0.004	22.0
0.002 16.2	0.002	16.2

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

	Clay	Fine	Medium Coarse	Fine Medium	Coarse	Fine	Medium Coarse	Cobbles	Boulder
			Silt	Sand			Gravel		
l	16.2		32.0	26.1			25.7	0.0	0.0

Sample Description Grey slightly gravelly slightly sandy silty CLAY.

Project No. BH/TP No. NMTL 3243 BH02

Ltd

Operator

NM

TL

Project Whitehall, Swords GII Project ID-9225-11-19

Tzr Checked Nc Approved Bc Date sample tested 01/06

11-19 Sample No. 01/08/2020 Depth B 6.0m

Sieve	%
Size mm	Passing
125.000	100.0
75.000	100.0
63.000	100.0
50.000	100.0
37.500	100.0
28.000	94.6
20.000	91.1
14.000	91.1
10.000	86.0
6.300	82.0
5.000	79.1
3.350	76.4
2.000	72.1
1.180	67.1
0.600	61.6
0.425	58.9
0.300	56.2
0.212	53.5
0.150	50.9
0.063	44.8
0.052	42.5
0.037	39.5
0.019	33.6
0.010	27.4
0.007	24.9
0.005	21.9
0.004	18.9
0.002	12.9
NM	

TL

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

	Clay	Fine	Medium Coarse	Fine Medium	Coarse	Fine	Medium Coarse	Cobbles	Boulder
			Silt	Sand			Gravel		
l	12.9		31.8	27.3			27.9	0.0	0.0

Sample Description Light brown slightly sandy slightly gravelly silty CLAY.

Project No. BH/TP No.

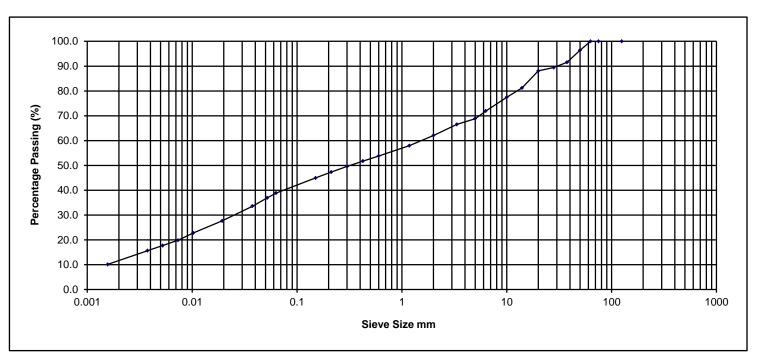
NMTL 3243 BH03

Ltd Operator Tzr

Project Whitehall, Swords

Tzr Checked Nc Approved Bc

GII Project ID-9225-11-19 Sample No.


Date sample tested 01/08/2020 Depth

B 2.0m

Sieve	%			
Size mm	Passing			
125.000	100.0			
75.000	100.0			
63.000	100.0			
Size mm 125.000 75.000 63.000 50.000 37.500 28.000 20.000 14.000 6.300 5.000 3.350 2.000 1.180 0.600 0.425 0.300 0.212 0.150 0.063 0.052 0.037 0.019	96.4			
37.500	91.5			
28.000	89.5			
20.000	88.1			
14.000	81.3			
10.000	77.5			
6.300	71.9			
5.000	68.8			
3.350	66.5			
2.000	62.1			
1.180	58.0			
0.600	53.8			
0.425	51.7			
0.300	49.6			
0.212	47.3			
0.150	44.9			
0.063	38.9			
0.052	37.0			
0.037	33.6			
0.019	27.7			
0.010	22.8			
0.007	19.9			
0.005	17.7			
0.004	15.6			
0.002	10.1			
NM				

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

	Clay	Fine	Medium Coarse	Fine Medium	Coarse	Fine	Medium Coarse	Cobbles	Boulder
			Silt	Sand			Gravel		
L	10.1		28.7	23.2			37.9	0.0	0.0

Sample Description Light brown/grey slightly sandy gravelly silty CLAY.

Project No. BH/TP No.

NMTL 3243 BH05

TL

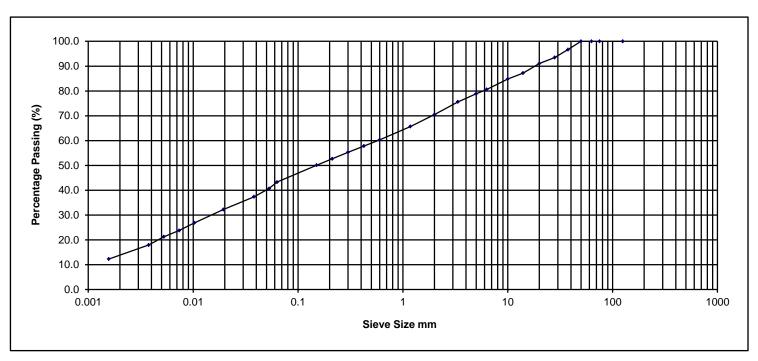
Whitehall, Swords Project GII Project ID-9225-11-19 Date sample tested

Sample No.

В

Ltd

Checked Tzr Approved Bc Operator Nc


01/08/2020 Depth

1.0m

Sieve	%			
Size mm	Passing			
125.000	100.0			
75.000	100.0			
63.000	100.0			
50.000	100.0			
37.500	96.6			
28.000	93.5			
20.000	91.1			
14.000	87.2			
10.000	84.8			
6.300	80.6			
5.000	78.9			
3.350	75.6			
2.000	70.5			
1.180	65.7			
0.600	60.3			
0.425	57.8			
0.300	55.3			
0.212	52.7			
0.150	50.1			
0.063	43.3			
0.053	40.7			
0.038	37.4			
0.019	32.3			
0.010	26.9			
0.007	23.8			
0.005	21.2			
0.004	17.9			
0.002	12.3			
A/8/				

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

Clay	Fine	Medium Coarse	Fine Medium	Coarse	Fine	Medium Coarse	Cobbles	Boulder
		Silt	Sand			Gravel		
12.3		31.0	27.2			29.5	0.0	0.0

NM

TL

Ltd

Operator

Sample Description Light brown/orange slightly sandy slightly gravelly silty CLAY.

Project No. BH/TP No.

NMTL 3243 BH05

В

Project Whitehall, Swords GII Project ID-9225-11-19 Checked Date sample tested 01/08/2020 Depth Tzr Nc Approved Bc

Sample No.

2.0m

Sieve	%			
Size mm	Passing			
125.000	100.0			
75.000	100.0			
63.000	100.0			
50.000	100.0			
37.500	87.9			
28.000	86.3			
20.000	83.9			
14.000	81.4			
10.000	78.5			
6.300	74.6			
5.000	70.7			
3.350	67.9			
2.000	62.7 57.7			
1.180				
0.600	52.8			
0.425	50.7			
0.300	48.7			
0.212	46.6			
0.150	44.6			
0.063	39.3			
0.054	37.6			
0.038	34.6			
0.020	29.4			
0.010	25.6			
0.007	22.4			
0.005	20.9			
0.004	18.2			
0.002	12.7			
NM				

TL

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

CI	lay	Fine	Medium Coarse	Fine Medium	Coarse	Fine	Medium Coarse	Cobbles	Boulder
			Silt	Sand			Gravel		
	2.7		26.6	23.4			37.3	0.0	0.0

Sample Description Grey slightly sandy gravelly silty CLAY.

Project No. BH/TP No. NMTL 3243 BH05

В

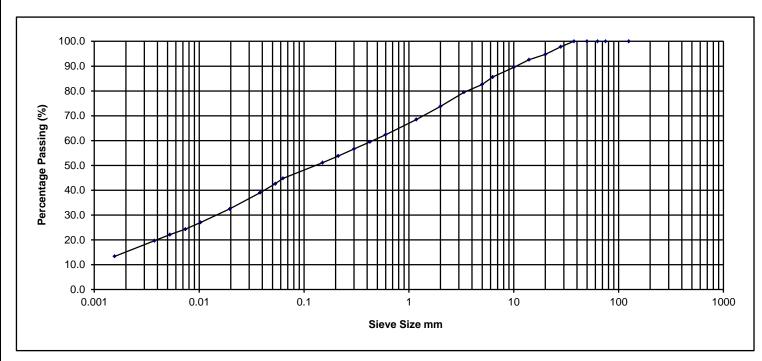
4.0m

Ltd ___

Operator

Project Whitehall, Swords

Tzr Checked Nc Approved Bc


GII Project ID-9225-11-19
Date sample tested 01/0

11-19 Sample No. 01/08/2020 Depth

Sieve	%		
Size mm	Passing		
125.000	100.0		
75.000	100.0		
63.000	100.0		
50.000	100.0		
37.500	100.0		
28.000	97.8		
20.000	94.7		
14.000	92.6		
10.000	89.5		
6.300	85.6		
5.000	82.7		
3.350	79.5		
2.000	73.8		
1.180	68.5		
0.600	62.4		
0.425	59.5		
0.300	56.7		
0.212	53.8		
0.150	51.1		
0.063	44.8		
0.053	42.6		
0.038	39.1		
0.020	32.5		
0.010	27.0		
0.007	24.3		
0.005	22.1		
0.004	19.7		
0.002	13.4		
A/8/			

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

Clay	Fine	Medium Coarse	Fine Medium	Coarse	Fine	Medium Coarse	Cobbles	Boulder
		Silt	Sand			Gravel		
13.4		31.4	29.0			26.2	0.0	0.0

Date sample tested

NM

TL

Ltd

Operator

Sample Description Grey slightly gravelly slightly sandy silty CLAY.

Project No. BH/TP No.

NMTL 3243

Project Whitehall, Swords

Tzr Checked Nc Approved Bc

GII Project ID-9225-11-19

Sample No.


01/08/2020 Depth

BH06 B 7.0m

Sieve	%			
Size mm	Passing			
125.000	100.0			
75.000	100.0			
63.000	100.0			
50.000	100.0			
37.500	100.0			
28.000	95.7			
20.000	93.4			
14.000	88.2			
10.000	86.1			
6.300	82.0			
5.000	78.1			
3.350	75.1			
2.000	70.3 65.7 60.0			
1.180				
0.600				
0.425	57.2			
0.300	54.3			
0.212	51.6			
0.150	49.0			
0.063	43.7			
0.054	42.0			
0.038	38.7			
0.020	33.0			
0.010	27.9			
0.007	24.6			
0.005	22.3			
0.004	19.2			
0.002	13.0			
NM				

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

Clay	/ Fine	Medium Coarse	Fine Medium	Coarse	Fine	Medium Coarse	Cobbles	Boulder
		Silt	Sand			Gravel		
13.0)	30.8	26.6			29.7	0.0	0.0

Sample Description Grey slightly sandy slightly gravelly silty CLAY.

Project No. BH/TP No.

NMTL 3243 BH07

Ltd

Operator

TL

Project Whitehall, Swords

Tzr Checked Nc Approved Bc

GII Project ID-9225-11-19
Date sample tested 01/0


11-19 Sample No. 01/08/2020 Depth

B 7.0m

Sieve	%			
Size mm	Passing			
125.000	100.0			
75.000	100.0			
63.000	100.0			
50.000	100.0			
37.500	100.0			
28.000	100.0			
20.000	98.8			
14.000	97.4			
10.000	96.1			
6.300	93.7			
5.000	92.7			
3.350	91.1			
2.000	86.3			
1.180	81.6 78.3			
0.600				
0.425	76.9			
0.300	75.3			
0.212	73.4			
0.150	71.2			
0.063	64.8			
0.051	61.5			
0.037	56.5			
0.019	47.9			
0.010	39.2			
0.007	35.6			
0.005	31.6			
0.004	27.9			
0.002	19.6			
NM				

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

	Clay	Fine Medium Coarse	Fine Medium Coarse	Fine Medium Coarse	Cobbles	Boulder
		Silt	Sand	Gravel		
l	19.6	45.2	21.5	13.7	0.0	0.0

Sample Description Light brown slightly gravelly slightly sandy silty CLAY.

Project No. BH/TP No.

NMTL 3243 BH08 В

Ltd Operator

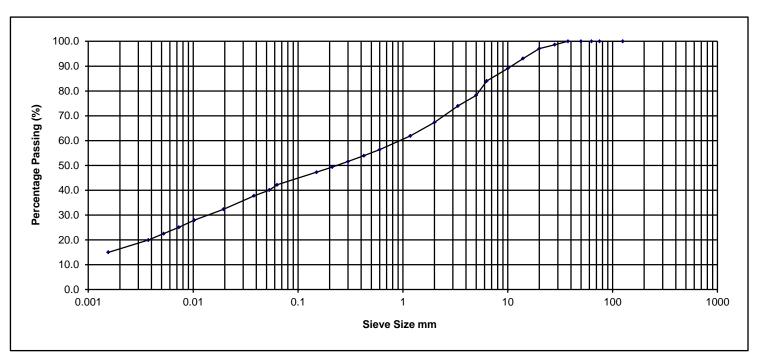
Whitehall, Swords Project Nc Approved Bc GII Project ID-9225-11-19

Sample No.

2.0m

TL

Checked Tzr


Date sample tested

01/08/2020 Depth

Sieve	%			
Size mm	Passing			
125.000	100.0			
75.000	100.0			
63.000	100.0			
50.000	100.0			
37.500	100.0			
28.000	98.6			
20.000	97.1			
14.000	93.1			
10.000	89.0			
6.300	84.0			
5.000	78.3			
3.350	74.0			
2.000	67.3			
1.180	61.9			
0.600	56.4			
0.425	53.9			
0.300	51.6			
0.212	49.4			
0.150	47.3			
0.063	42.2			
0.053	40.1			
0.038	37.8			
0.019	32.3			
0.010	27.9			
0.007	25.1			
0.005	22.5			
0.004	19.9			
0.002	15.0			
NM				

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

Clay	Fine	Medium Coarse	Fine Medium	Coarse	Fine	Medium Coarse	Cobbles	Boulder
		Silt	Sand			Gravel		
15.0		27.2	25.2			32.7	0.0	0.0

Sample Description Grey slightly sandy slightly gravelly silty CLAY.

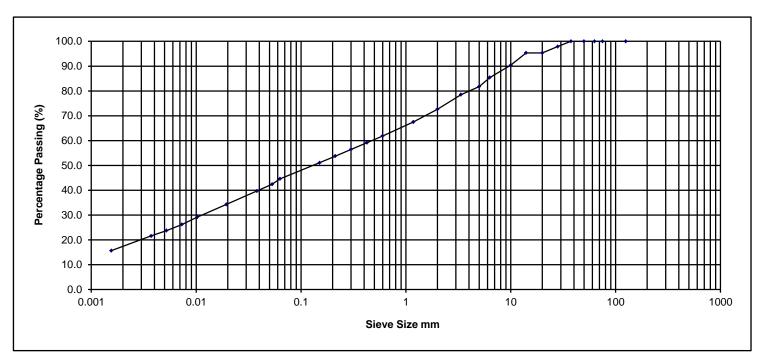
Project No. NMTL 3243 BH/TP No. BH09 Sample No.

В

Ltd

TL

Whitehall, Swords Project Checked Tzr Operator Nc Approved Bc


GII Project ID-9225-11-19 Date sample tested 01/08/2020 Depth

3.0m

Sieve	%			
Size mm	Passing			
125.000	100.0			
75.000	100.0			
63.000	100.0			
50.000	100.0			
37.500	100.0			
28.000	97.9			
20.000	95.4			
14.000	95.4			
10.000	90.4			
6.300	85.4			
5.000	81.8			
3.350	78.5			
2.000	72.6			
1.180	67.5			
0.600	61.9			
0.425	59.2			
0.300	56.5			
0.212	53.7			
0.150	51.1			
0.063	44.6			
0.053	42.4			
0.038	39.7			
0.019	34.3			
0.010	29.2			
0.007	26.2			
0.005	23.8			
0.004	21.6			
0.002	15.7			

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

С	lay	Fine	Medium Coarse	Fine Medium	Coarse	Fine	Medium Coarse	Cobbles	Boulder
			Silt	Sand			Gravel		
15	5.7		28.9	28.1			27.4	0.0	0.0

NM

TL

Ltd

Operator

Sample Description Grey slightly gravelly slightly sandy silty CLAY.

Project No. BH/TP No.

NMTL 3243 BH09

Project		Whitehall, Swords				
Tzr	Checked	Nc	Approved	ı		

GII Project ID-9225-11-19
Date sample tested 01/0

11-19 Sample No. 01/08/2020 Depth

B 5.0m

Sieve	%			
Size mm	Passing			
125.000	100.0			
75.000	100.0			
63.000	100.0			
50.000	100.0			
37.500	96.8			
28.000	94.6			
20.000	90.4			
14.000	89.6			
10.000	87.0			
6.300	82.3			
5.000	79.1			
3.350	75.8			
2.000	69.4			
1.180	63.9			
0.600	58.3			
0.425	55.8			
0.300	53.4			
0.212	51.0			
0.150	48.7			
0.063	42.9			
0.053	40.7			
0.038	37.8			
0.019	32.4			
0.010	27.0			
0.007	24.6			
0.005	22.2			
0.004	19.7			
0.002	14.9			
NM				

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

	Clay	Fine Me	dium Coarse	Fine	Medium	Coarse	Fine	Medium Coarse	Cobbles	Boulder
			Silt		Sand			Gravel		
Ŀ	14.9		28.0		26.6			30.6	0.0	0.0

Sample Description Grey slightly sandy slightly gravelly silty CLAY.

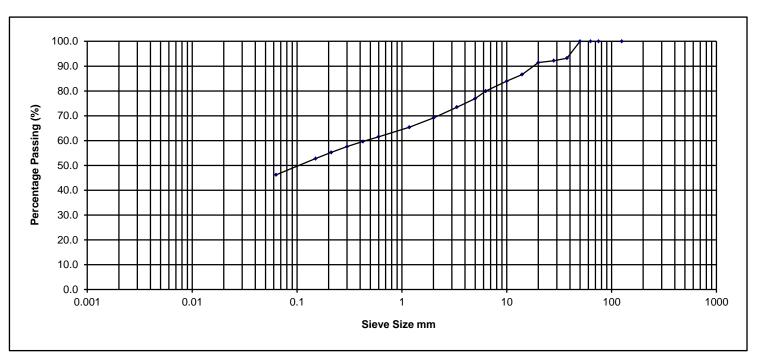
Project No. BH/TP No. NMTL 3243 BH10

Ltd

Operator

TL

Project Whitehall, Swords GII Project ID-9225-11-19


Tzr Checked Nc Approved Bc Date sample tested 01/06

11-19 Sample No. 01/08/2020 Depth B 3.0m

Sieve	%
Size mm	Passing
125.000	100.0
75.000	100.0
63.000	100.0
50.000	100.0
37.500	93.2
28.000	92.2
20.000	91.4
14.000	86.6
10.000	84.0
6.300	80.0
5.000	76.9
3.350	73.5
2.000	69.1
1.180	65.4
0.600	61.6
0.425	59.6
0.300	57.6
0.212	55.3
0.150	52.7
0.063	46.2

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

Clay	Fine	Medium Coarse	Fine Medium	Coarse	Fine	Medium Coarse	Cobbles	Boulder
		Silt	Sand			Gravel		
		46.2	22.9			30.9	0.0	0.0

NM

TL

Ltd

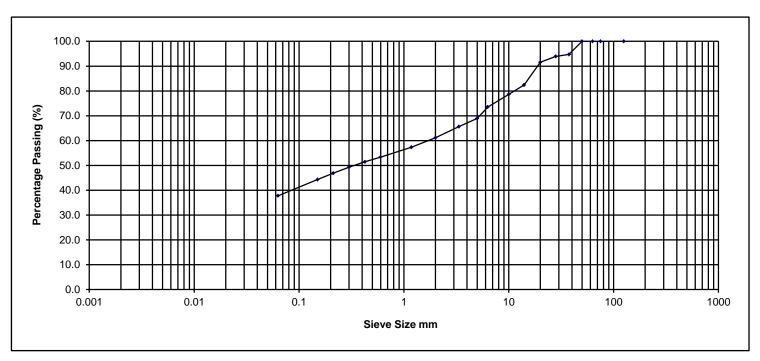
Operator

Sample Description Grey/brown slightly sandy slightly gravelly silty CLAY.

Project No. BH/TP No.

NMTL 3243 BH04

Whitehall, Swords Project GII Project ID-9225-11-19 Date sample tested 11/08/2020 Depth Tzr Checked Nc Approved Bc


Sample No.

С 10.5-10.90m

Sieve	%
Size mm	Passing
125.000	100.0
75.000	100.0
63.000	100.0
50.000	100.0
37.500	94.7
28.000	93.9
20.000	91.6
14.000	82.4
10.000	78.6
6.300	73.5
5.000	68.9
3.350	65.7
2.000	61.2
1.180	57.3
0.600	53.4
0.425	51.4
0.300	49.3
0.212	46.9
0.150	44.3
0.063	37.8

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

Clay	Fine	Medium Coarse	Fine Medium	Coarse	Fine	Medium Coarse	Cobbles	Boulder
		Silt	Sand			Gravel		
		37.8	23.4			38.8	0.0	0.0

NM

TL

Ltd

Operator

Sample Description Grey/brown slightly sandy gravelly silty CLAY.

Project No. BH/TP No.

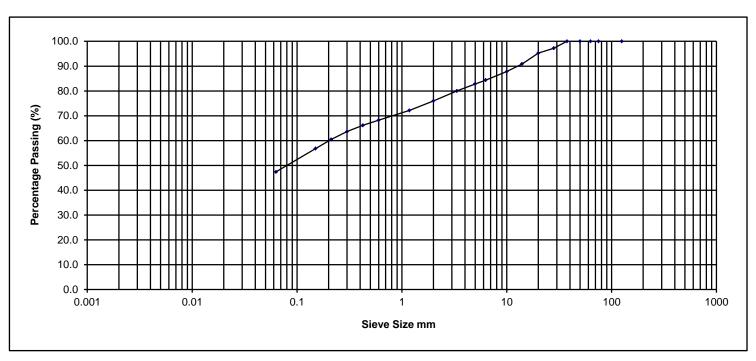
NMTL 3243 BH05

Project Whitehall, Swords GII Project

Tzr Checked Nc Approved Bc Date sample tested

GII Project ID-9225-11-19

Sample No.


11/08/2020 Depth

C 8.30-8.70m

Sieve	%
Size mm	Passing
125.000	100.0
75.000	100.0
63.000	100.0
50.000	100.0
37.500	100.0
28.000	97.2
20.000	95.2
14.000	90.9
10.000	87.8
6.300	84.4
5.000	82.8
3.350	80.0
2.000	76.0
1.180	72.2
0.600	68.2
0.425	66.2
0.300	63.7
0.212	60.5
0.150	56.8
0.063	47.4

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

Clay	Fine	Medium Coarse	Fine Medium	Coarse	Fine	Medium Coarse	Cobbles	Boulder
		Silt	Sand			Gravel		
		47.4	28.6			24.0	0.0	0.0

NM

TL

Ltd

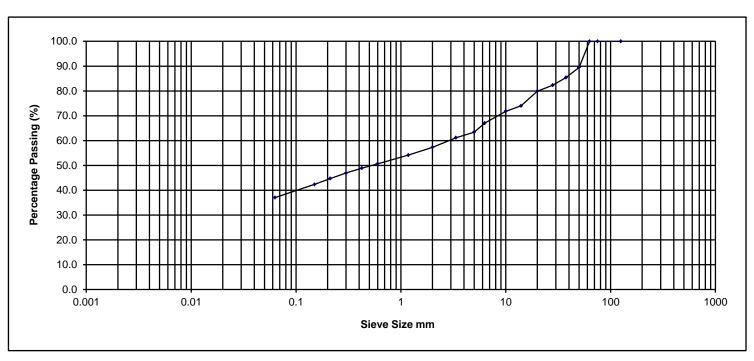
Operator

Sample Description Grey/brown slightly gravelly slightly sandy silty CLAY.

Project No. BH/TP No.

NMTL 3243 BH05

Whitehall, Swords Project GII Project ID-9225-11-19 Date sample tested 11/08/2020 Depth Tzr Checked Nc Approved Bc


Sample No.

С 14.60-15.0m

Sieve	%
Size mm	Passing
125.000	100.0
75.000	100.0
63.000	100.0
50.000	89.5
37.500	85.4
28.000	82.3
20.000	79.9
14.000	74.0
10.000	71.8
6.300	67.1
5.000	63.4
3.350	61.2
2.000	57.3
1.180	54.2
0.600	50.7
0.425	48.9
0.300	47.0
0.212	44.7
0.150	42.4
0.063	37.0

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

Clay	Fine	Medium Coarse	Fine Medium Coars	Fine Medium Coarse	Cobbles	Boulder
		Silt	Sand	Gravel		
		37.0	20.2	42.7	0.0	0.0

NM

TL

Ltd

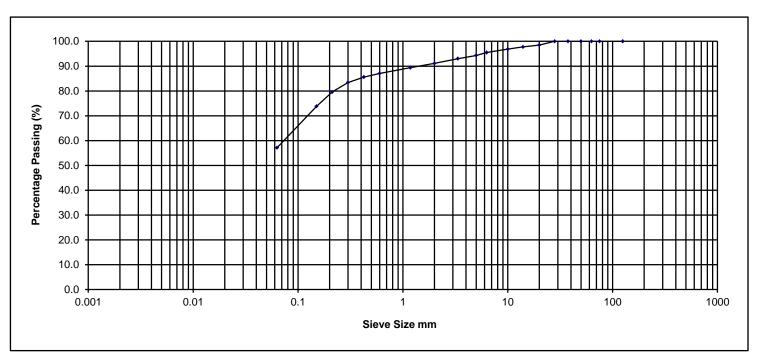
Operator

Sample Description Grey/brown slightly sandy gravelly silty CLAY.

Project No. BH/TP No. NMTL 3243 BH09

9.65-10.0m

Whitehall, Swords Project GII Project ID-9225-11-19 Checked Date sample tested 11/08/2020 Depth Tzr Approved Bc Nc


Sample No.

С

Sieve	%			
Size mm	Passing			
125.000	100.0			
75.000	100.0			
63.000	100.0			
50.000	100.0			
37.500	100.0			
28.000	100.0			
20.000	98.5			
14.000	97.7			
10.000	96.9			
6.300	95.5			
5.000	94.3			
3.350	93.0			
2.000	91.1			
1.180	89.4			
0.600	87.0			
0.425	85.6			
0.300	83.4			
0.212	79.6			
0.150	73.8			
0.063	57.1			

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

Cla	/ Fine	Medium Coarse	Fine Medium	Coarse	parse Fine Medium Coarse		Cobbles	Boulder
		Silt	Sand		Gravel			
		57.1	34.0			8.9	0.0	0.0

NM

TL

Ltd

Operator

Sample Description Grey/brown slightly gravelly slightly sandy silty CLAY.

Project No. BH/TP No.

NMTL 3243 BH09

Project Whitehall, Swords GII Project ID-9225-11-19

Tzr Checked Nc Approved Bc Date sample tested 11/08/2

11-19 Sample No. 11/08/2020 Depth C 19.7-20.0m

Single sample mass		
Initial sample mass		1495 g
Moisture content		13.9 %
Dry mass		1312.0 g
Mass retained		
on 20mm sieve	g	28.7 %

protrusion

49.4

39.0

37.9

37.8 37.8

37.6

mm

Change in

penetration

11.6

1.4

n to 4n

mm

Project Nan	ne:		Job ref.	NMTL_3243
	Whitehall, S	words	GII Project ID	9255-11-19
			TP/BH	TP01
Soil descrip	otion:		Sample no.	В
Light brown	slightly sand	y slightly gravelly clayey SILT	Depth	0.70m
Test metho	d	BS 1377 : Part 4 : 1990 : 5	Date Tested	07/08/2020
			Date Sampled	N/A
MCV	1.9	Natural	Date Received	29/07/2020

* Delete as appropriate

Total

n

number

of blows

2

3 4

6

MCV 1.9 Natural

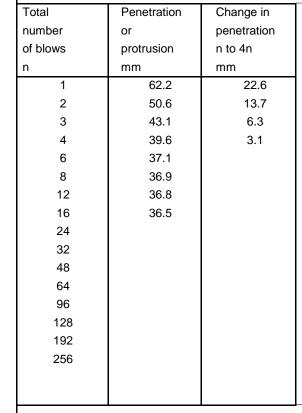
						umber of b						
30.0	1	2	3	4	6 8	12	16	24	32	48	64	96
33.3												
25.0												
20.0												
15.0												
10.0												
5.0	·····										·····	
0.0												
	0 2	4		6	8	10	12	14	- 	16	18	20

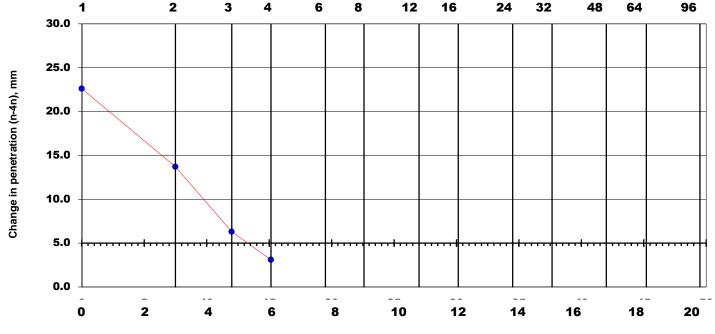
Operator	Checked	Approved		
Tch	Nc	Вс		

Single sample mass		
Initial sample mass		1492 g
Moisture content		12.3 %
Dry mass		1329.0 g
Mass retained		
on 20mm sieve	g	16 %

SINGLE POINT MOISTURE CONDITION VALUE TEST

Project Name:		Job ref.	NMTL_3243
White	hall, Swords	GII Project ID	9255-11-19
		TP/BH	TP01
Soil description:		Sample no.	В
Light brown slightly	y sandy slightly gravelly SILT/CLAY	Depth	2.40m
Test method	BS 1377 : Part 4 : 1990 : 5	Date Tested	13/08/2020
		Date Sampled	N/A


Date Received


12/08/2020

* Delete as appropriate

MCV 5.4 Natural

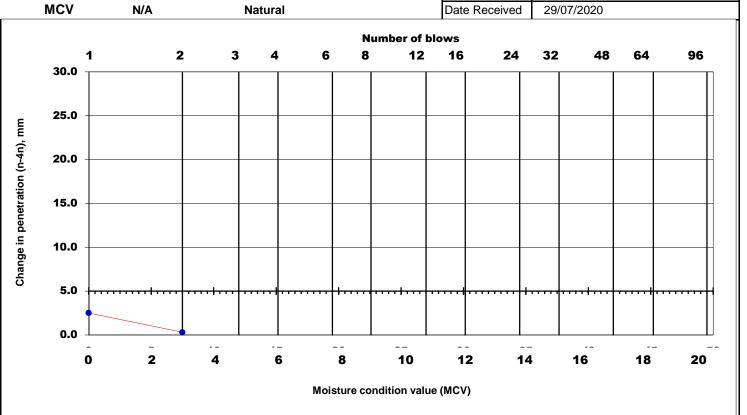
		Number of blows										
1	1 2	2 3	4	6	8	12	16	24	32	48	64	96
30.0 T					1		I		I		1	
25.0												
∠ 5.U →							•			•		+

Moisture condition value (MCV)

Operator	Checked	Approved		
Ms	Nc	Вс		

Single sample mass		
Initial sample mass		1491 g
Moisture content		16.0 %
Dry mass		1285.0 g
Mass retained		
on 20mm sieve	q	14.3 %

Project Name:		Job ref.	NMTL_3243	
White	ehall, Swords	GII Project ID	9255-11-19	
		TP/BH	TP02	
Soil description:		Sample no.	В	
Light brown slightl	y sandy slightly gravelly SILT/CLAY	Depth	1.50m	
Test method	BS 1377 : Part 4 : 1990 : 5	Date Tested	04/08/2020	


Date Sampled

N/A

SINGLE POINT MOISTURE CONDITION VALUE TEST

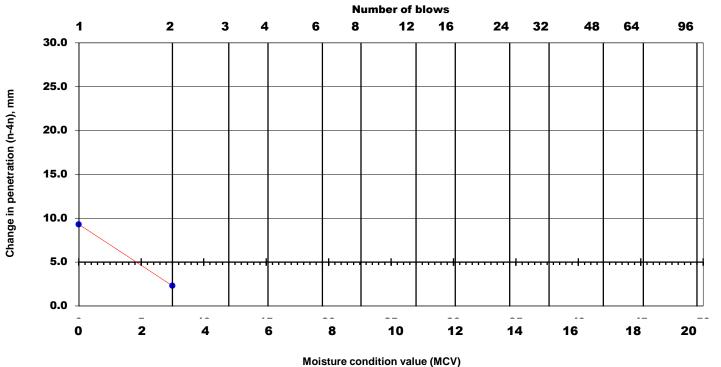
*	Delete	as	appropriate
---	--------	----	-------------

Total	Penetration	Change in
number	or	penetration
of blows	protrusion	n to 4n
n	mm	mm
1	42.6	2.5
2	40.4	0.3
3	40.4	
4	40.1	
6	40.1	
8	40.1	
12		
16		
24		
32		
48		
64		
96		
128		
192		
256		

Operator	Checked	Approved
Tch	Nc	Вс

Single sample mass		
Initial sample mass		1481 g
Moisture content		32.4 %
Dry mass		1118.8 g
Mass retained		
on 20mm sieve	g	8.4 %

SINGLE POINT MOISTURE CONDITION VALUE TEST
--


Project Name: Whitehall, Swords		Job ref.	NMTL_3243	
		GII Project ID	9255-11-19	
			TP/BH	TP03
Soil description:			Sample no.	В
Light brown slightly sandy slightly gravelly SILT/CLAY			Depth	0.50m
Test method		BS 1377 : Part 4 : 1990 : 5	Date Tested	07/08/2020
		Date Sampled	N/A	
MCV	1.8	Natural	Date Received	29/07/2020

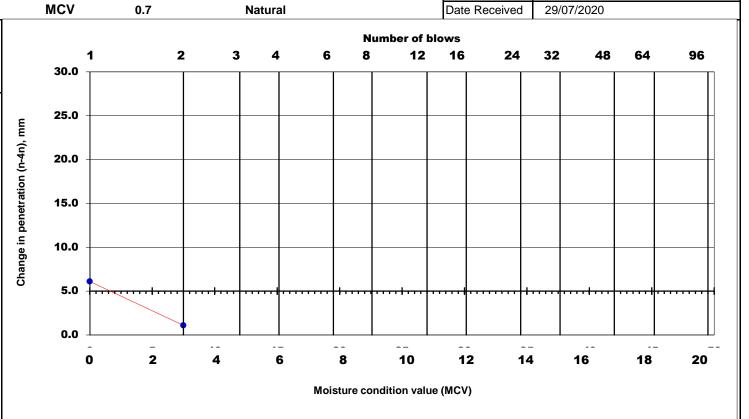
* Delete as appropriate

MCV 1.8 Natural

	Date	Received	d 29/07/2020				
of bl	ows						
12	16	24	32	48	64	96	
-							

Total	Penetration	Change in
number	or	penetration
of blows	protrusion	n to 4n
n	mm	mm
1	63.2	9.3
2	55.6	2.3
3	54.3	
4	53.9	
6	53.8	
8	53.3	
12		
16		
24		
32		
48		
64		
96		
128		
192		
256		

Operator Checked		Approved
Tch	Nc	Вс


Single sample mass		
Initial sample mass		1491 g
Moisture content 1		14.4 %
Dry mass 1303.5		1303.5 g
Mass retained		
on 20mm sieve	g	11.9 %

Project Name: Whitehall, Swords		Job ref.	NMTL_3243
		GII Project ID	9255-11-19
1		TP/BH	TP03
Soil description: Grey slightly sandy gravelly silty CLAY		Sample no.	В
		Depth	2.70m
Test method	BS 1377 : Part 4 : 1990 : 5	Date Tested	04/08/2020
		Date Sampled	N/A

SINGLE POINT MOISTURE CONDITION VALUE TEST

*	Delete	as	appropriate	
---	--------	----	-------------	--

Penetration	Change in
	penetration
	n to 4n
mm	mm
43.8	6.1
38.6	1.1
38.1	
37.7	
37.5	
37.5	
	or protrusion mm 43.8 38.6 38.1 37.7 37.5

Operator	Checked	Approved
Tch	Nc	Вс

Single sample mass		
Initial sample mass		1494 g
Moisture content		14.5 %
Dry mass		1305.0 g
Mass retained		
on 20mm sieve	g	8.39 %

protrusion

76.7

63.1

56.1

50.7

44.4

40.9

38.6

38.5

38.4

38.0

mm

Change in

penetration

26.0

22.2

17.5

12.2

6.0

2.9

n to 4n mm

SINGLE POINT MOIS	STURE CONDITION	VALUE TEST
-------------------	-----------------	------------

Project Name:		Job ref.	NMTL_3243
Whitehall, Swords		GII Project ID	9255-11-19
		TP/BH	TP04
Soil description:		Sample no.	Т
Light brown/grey	slightly sandy gravelly SILT/CLAY.	Depth	0.50m
Test method	BS 1377 : Part 4 : 1990 : 5	Date Tested	08/08/2020
		Date Sampled	N/A

Date Received

29/07/2020

* Delete as appropriate

Total

n

number

of blows

2

3

4

6

8 12

16

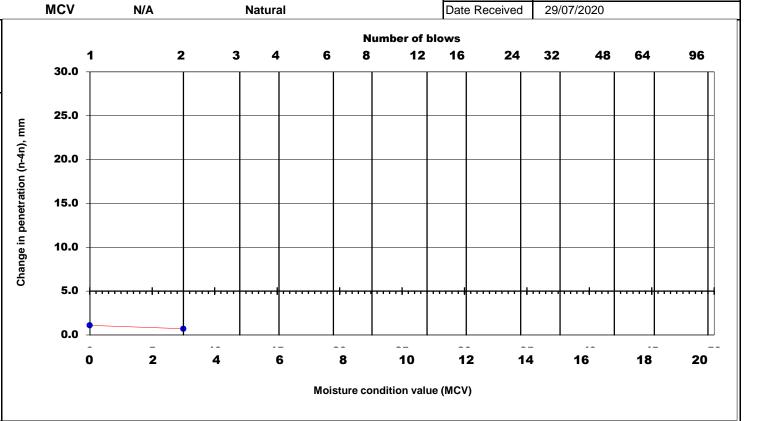
24

32

MCV	8.2	Natural

		•	•		_		umber of b		0.4		40	0.4	
30.0	1	2	3	4	6	8	12	16	24	32	48	64	96
30.0													
25.0													
20.0													
15.0													
10.0													
5.0	1			 									
0.0					_								
	0	2	4	6	5	8	10	1:	2 1	4	16	18	20
							ndition valu						

Operator	Operator Checked	
Tch	Nc	Вс


Single sample mass		
Initial sample mass		1478 g
Moisture content		20.2 %
Dry mass		1230.0 g
Mass retained		
on 20mm sieve	q	11.2 %

Project Name:		Job ref.	NMTL_3243
White	hall, Swords	GII Project ID	9255-11-19
		TP/BH	TP05C
Soil description:		Sample no.	Т
Light brown slightly	y sandy slightly gravelly SILT/CLAY.	Depth	0.90m
Test method	BS 1377 : Part 4 : 1990 : 5	Date Tested	04/08/2020
		Date Sampled	N/A

SINGLE POINT MOISTURE CONDITION VALUE TEST

* Delete as approp	oriate
--------------------	--------

Total	Penetration	Change in
number	or	penetration
of blows	protrusion	n to 4n
n	mm	mm
1	44.0	1.1
2	43.4	0.7
3	42.9	
4	42.9	
6	42.8	
8	42.7	
12		
16		
24		
32		
48		
64		
96		
128		
192		
256		

Operator	Checked	Approved
Tch	Nc	Вс

Single sample mass		
Initial sample mass		1490 g
Moisture content		14.5 %
Dry mass		1301.1 g
Mass retained		
on 20mm sieve	g	psd %

protrusion

84.3

70.1

62.2

55.0

48.4

43.8

39.3

37.8

37.6 37.6

37.4

mm

Change in

penetration

29.3

26.3

22.9

17.2

10.8

6.2

1.9

n to 4n mm

SINGLE POINT MOIS	STURE CONDITION	VALUE TEST
-------------------	-----------------	------------

Project Name:		Job ref.	NMTL_3243	
White	hall, Swords	GII Project ID	9255-11-19	
		TP/BH	TP06	
Soil description:		Sample no.	В	
Light brown/grey sl	ightly sandy slightly gravelly SILT/CLAY.	Depth	0.60m	
Test method	BS 1377 : Part 4 : 1990 : 5	Date Tested	05/08/2020	
		Date Sampled	N/A	

* Delete as appropriate

Total

n

number

of blows

2

3

4

6

8 12

16

24

32 48

						N	umber of b	lows					
	1	2	2 3	4	6			16	24	32	48	64	96
30.0													
25.0													
20.0													
15.0													
10.0													
5.0	+			•••••									
0.0		_		_	_					_			
	0	2	4	(6	8	10	1:	2 14	4	16	18	2

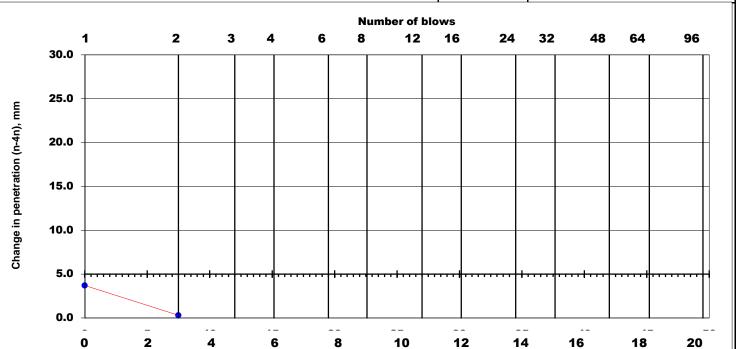
Operator	Checked	Approved
Tch	Nc	Вс

Single sample mass		
Initial sample mass		1489 g
Moisture content		35.3 %
Dry mass		1100.2 g
Mass retained		
on 20mm sieve	g	10.39 %

MCV

N/A

SINGLE POINT MOISTURE CONDITION VALUE TEST


Natural

Project Name:		Job ref.	NMTL_3243
White	hall, Swords	GII Project ID	9255-11-19
		TP/BH	TP07
Soil description:		Sample no.	В
Brown/grey slightly	sandy slightly gravelly SILT/CLAY.	Depth	0.70m
Test method	BS 1377 : Part 4 : 1990 : 5	Date Tested	06/08/2020
		Date Sampled	N/A

Date Received

29/07/2020

* Delete as appropriate								
Total	Penetration	Change in						
number	or	penetration						
of blows	protrusion	n to 4n						
n	mm	mm						
1	60.3	3.7						
2	56.8	0.3						
3	56.7							
4	56.6							
6	56.5							
8	56.5							
12								
16								
24								
32								
48								
64								
96								
128								
192								
1								

Moisture condition value (MCV)

NMTL Ltd

256

Operator	Checked	Approved
Tch	Nc	Вс

Single sample mass		
Initial sample mass		1496 g
Moisture content		15.4 %
Dry mass		1296.0 g
Mass retained		
on 20mm sieve	g	14.3 %

protrusion

44.7 40.9

40.4 40.3 40.3

40.2

mm

Change in

penetration

4.4

0.7

n to 4n

mm

	2 1201		
Project Name:	Job ref.	NMTL_3243	
Whitehall, Swords	GII Project ID	9255-11-19	
	TP/BH	TP07	
Soil description:	Sample no.	В	
Light brown slightly sandy slightly gravelly SILT/CLAY	Depth	3.30m	

Date Tested

Date Sampled

06/08/2020

N/A

k	Delete	as	appropriate
---	--------	----	-------------

Total

number

of blows

2 3

6

MCV	N/A	Natural

Test method

SINGLE POINT MOISTURE CONDITION VALUE TEST

BS 1377 : Part 4 : 1990 : 5

						Num	ber of bl	ows					
	1	2	3	4	6	8	12	16	24	32	48	64	96
30.0													
25.0													
20.0													
15.0													
10.0													
5.0		·····	··············										
0.0													
	0	2	4	6	8		10	12	14	4	16	18	2

A 1	88	_	•		4 _
N	М			•	m
, ,	'71		_	_	u

Operator	Checked	Approved
Tch	Nc	Вс

Single sample mass		
Initial sample mass		1493 g
Moisture content		14.7 %
Dry mass		1301.9 g
Mass retained		
on 20mm sieve	g	psd %

protrusion

87.2

74.7

67.6

62.9

56.9

53.1

48.3

45.1

41.9

40.5

39.9 39.9

39.7

mm

Change in

penetration

24.3

21.6

19.3

17.8

15.0

12.6

8.4

5.2

2.2

n to 4n mm

Project Name:		Job ref.	NMTL_3243
White	hall, Swords	GII Project ID	9255-11-19
		TP/BH	TP08
Soil description:		Sample no.	В
Brown slightly sand	dy slightly gravelly SILT/CLAY	Depth	0.70m
Test method	BS 1377 : Part 4 : 1990 : 5	Date Tested	04/08/2020
		Date Sampled	N/A

* Delete as appropriate

Total

n

number

of blows

2

3

4

6

8 12

16

24

32

48

64 96

128 192 256

MCV 12.2 Natural

1	Ī	2	3	4	e		umber of l		24	32	10	61	96
30.0			<u> </u>	4	6	8	12	16	24	32	48	64	
25.0	•												
20.0 -				_									
15.0 -				+									
10.0 -													
	_												
5.0 +				· · · · ·			 		7,,,,,,,	+	 	 -	
0.0													
-	_									-			
C	2	4		6		8	10	1	2 1	4	16	18	20
					Moi	etura co	ndition val	ue (MCV	^				

NMTL Ltd

Operator	Checked	Approved
Tch	Nc	Вс

Date Received 29/07/2020

Single sample mass		
Initial sample mass		1494 g
Moisture content		12.6 %
Dry mass		1327.3 g
Mass retained		
on 20mm sieve	g	6.2 %

protrusion

72.6

56.9

50.9

45.1

38.3

35.8

35.2 35.2

35.2

mm

Change in

penetration

27.5

21.1

15.7 9.9

3.1

n to 4n

mm

Project Name:		Job ref.	NMTL_3243	
White	hall, Swords	GII Project ID	9255-11-19	
		TP/BH	TP09	
Soil description:		Sample no.	В	
Brown slightly sand	dy slightly gravelly SILT/CLAY	Depth	1.90m	
Test method	BS 1377 : Part 4 : 1990 : 5	Date Tested	06/08/2020	
		Date Sampled	N/A	

Date Received

29/07/2020

* Delete as appropriate

Total

n

number

of blows

2

3

4

6

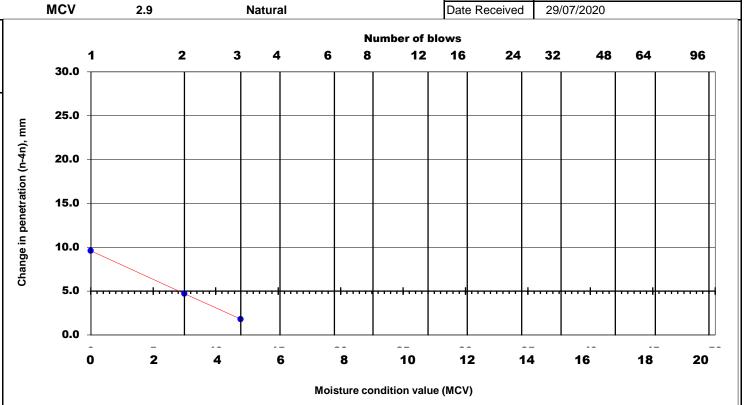
8 12

16 24

MCV	7.3	Natural

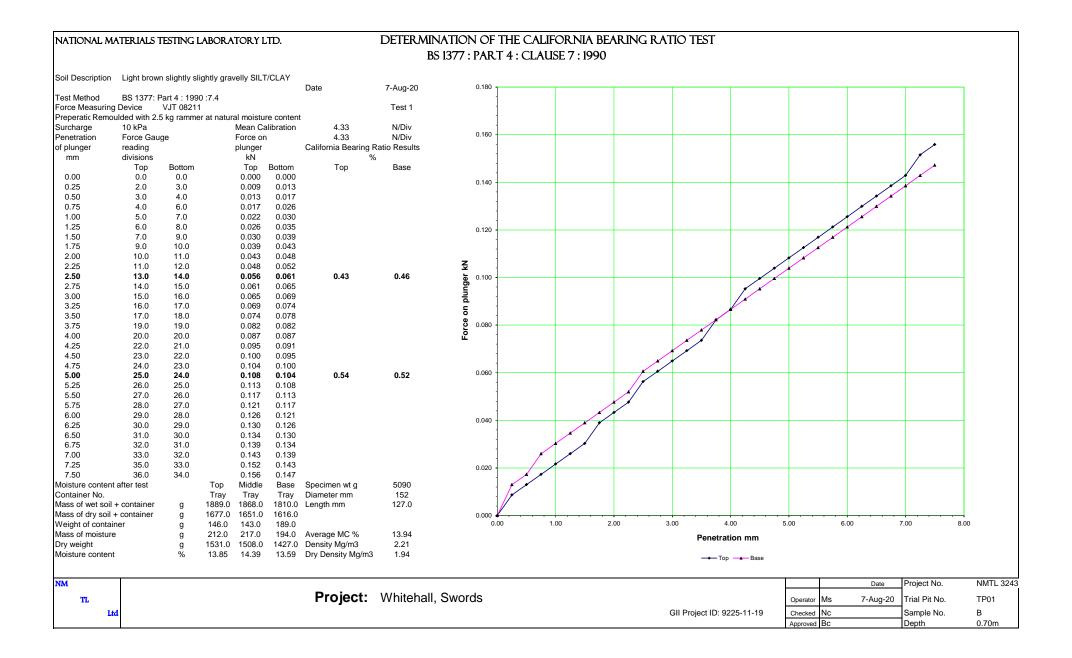
	1	2	3	4			umber of		24	22	40	G A	06
30.0	1	<u> </u>		- 4	↓ 6 	8	12	16	24	32	48	64	96
25.0													
20.0													
15.0													
10.0													
5.0	+					 				+			
0.0					_				_				
	0 2		4	(6	8	10	1	2 1	14	16	18	20

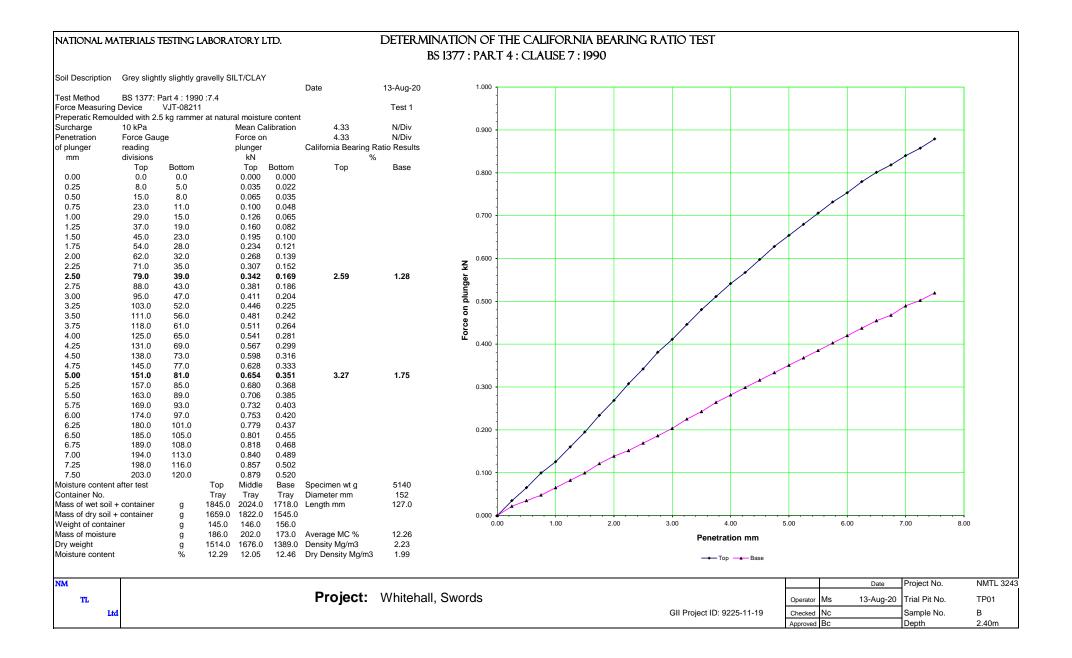
Operator	Checked	Approved
Tch	Nc	Вс

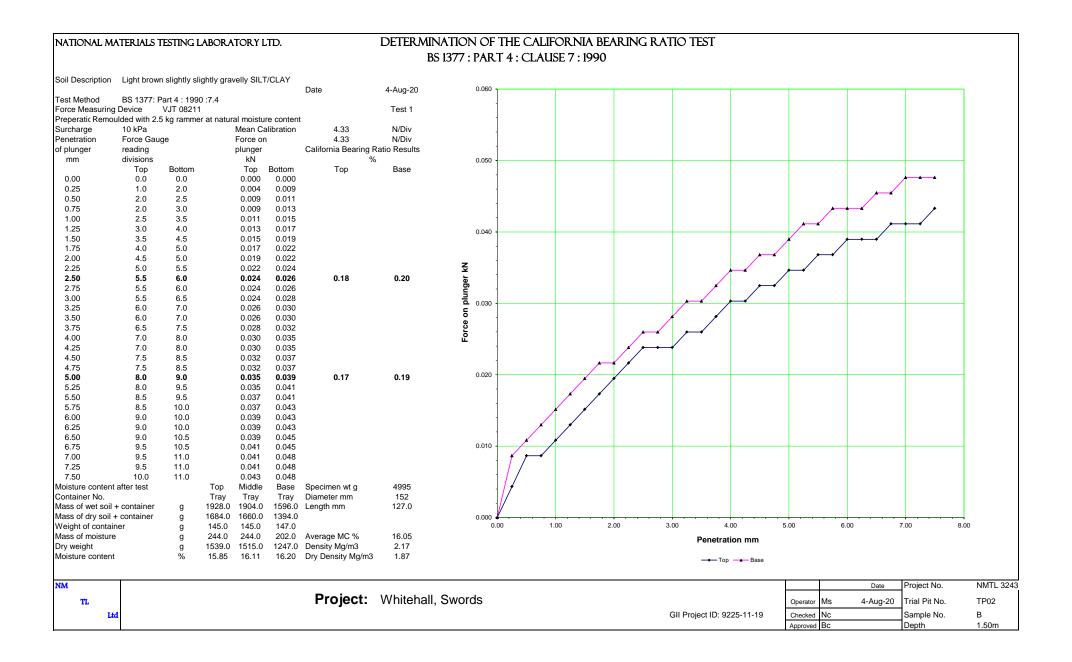

Single sample mass		
Initial sample mass		1497 g
Moisture content		18.4 %
Dry mass		1263.9 g
Mass retained		
on 20mm sieve	g	9.9 %

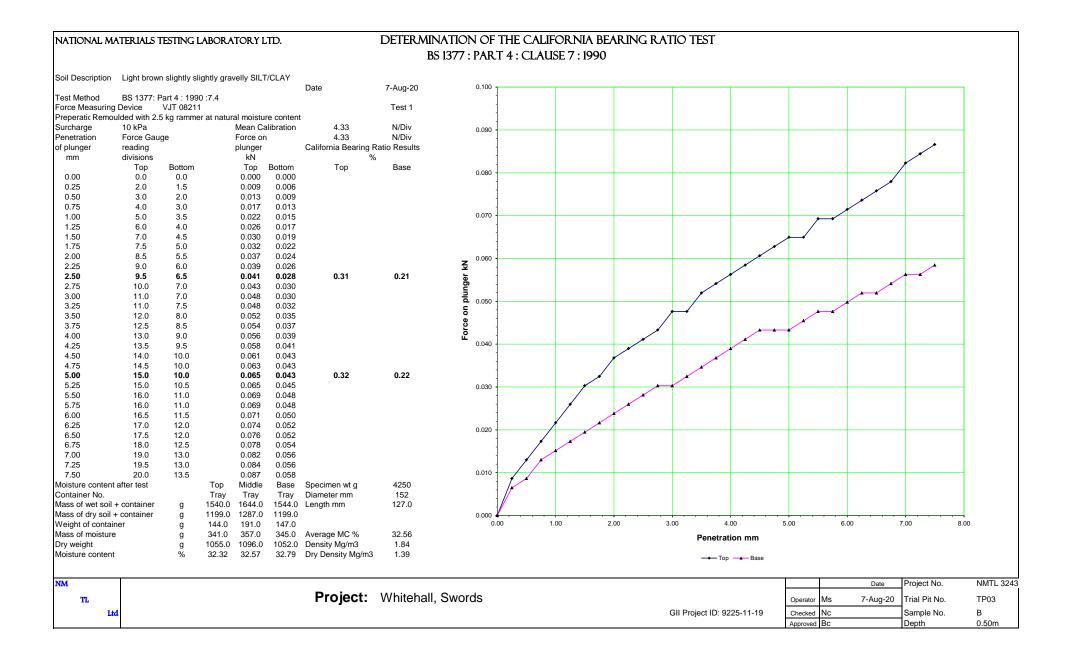
SINGLE POINT	MOISTURE	CONDITION	VALUE TES	T

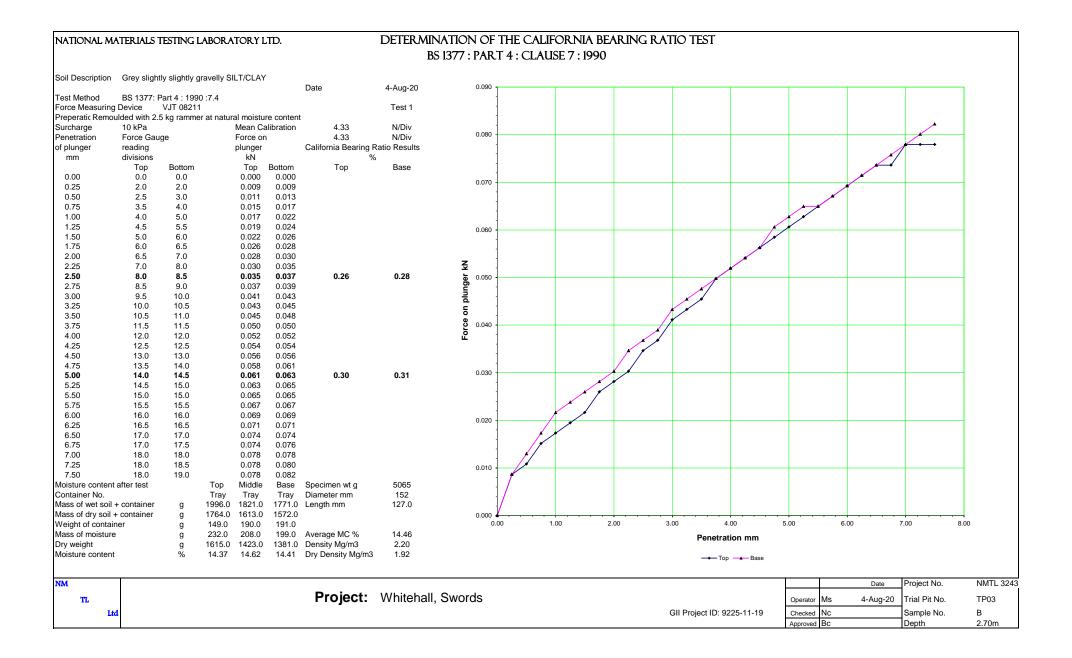
Project Name:		Job ref.	NMTL_3243	
White	hall, Swords	GII Project ID	9255-11-19	
		TP/BH	TP10	
Soil description:		Sample no.	В	
Light brown sligh	tly gravelly slightly sandy SILT/CLAY.	Depth	0.50m	
Test method	BS 1377 : Part 4 : 1990 : 5	Date Tested	07/08/2020	
\		Date Sampled	N/A	

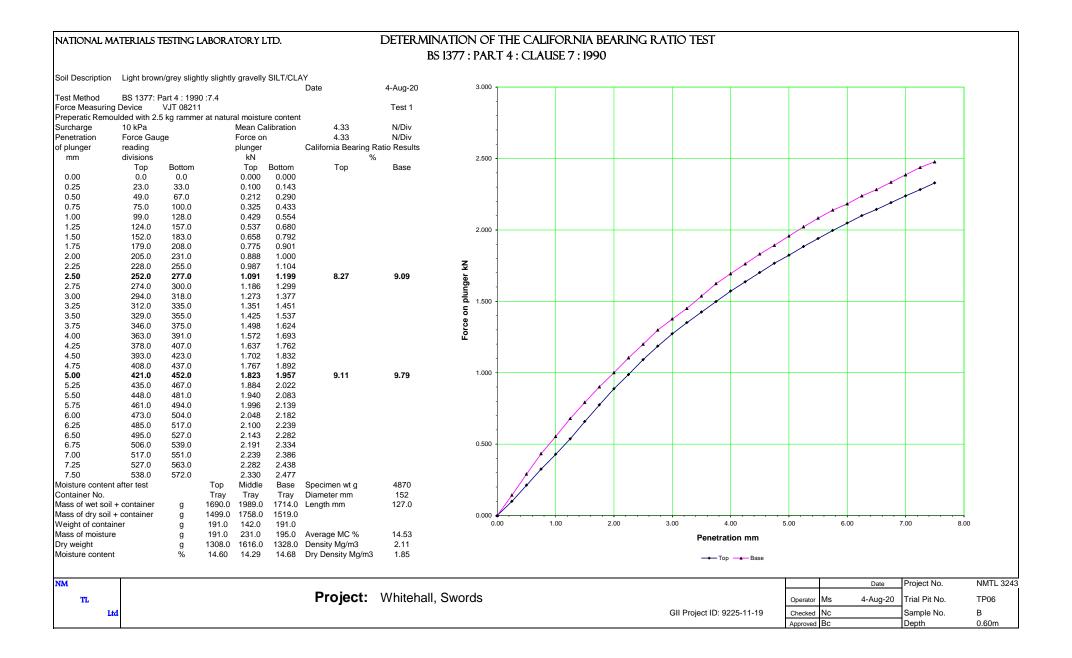

* Delete as appropriate

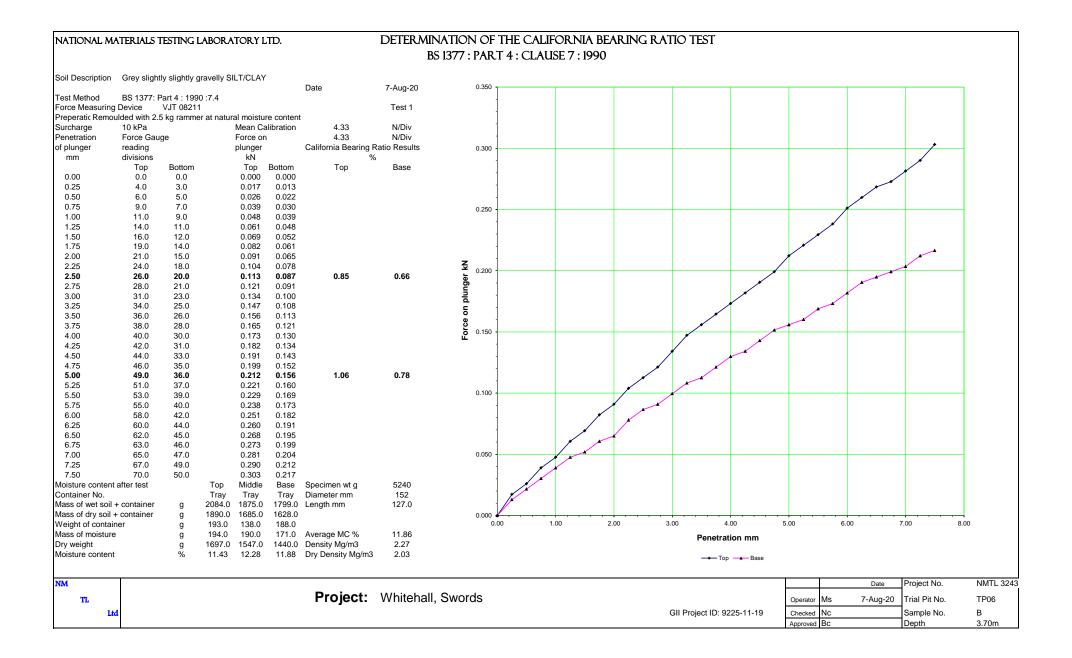

Total	Penetration	Change in	
number	or	penetration	
of blows	protrusion	n to 4n	
n	mm	mm	
1	52.4	9.6	
2	46.8	4.7	
3	43.8	1.8	
4	42.8		
6	42.1		
8	42.1		
12	42.0		
16			

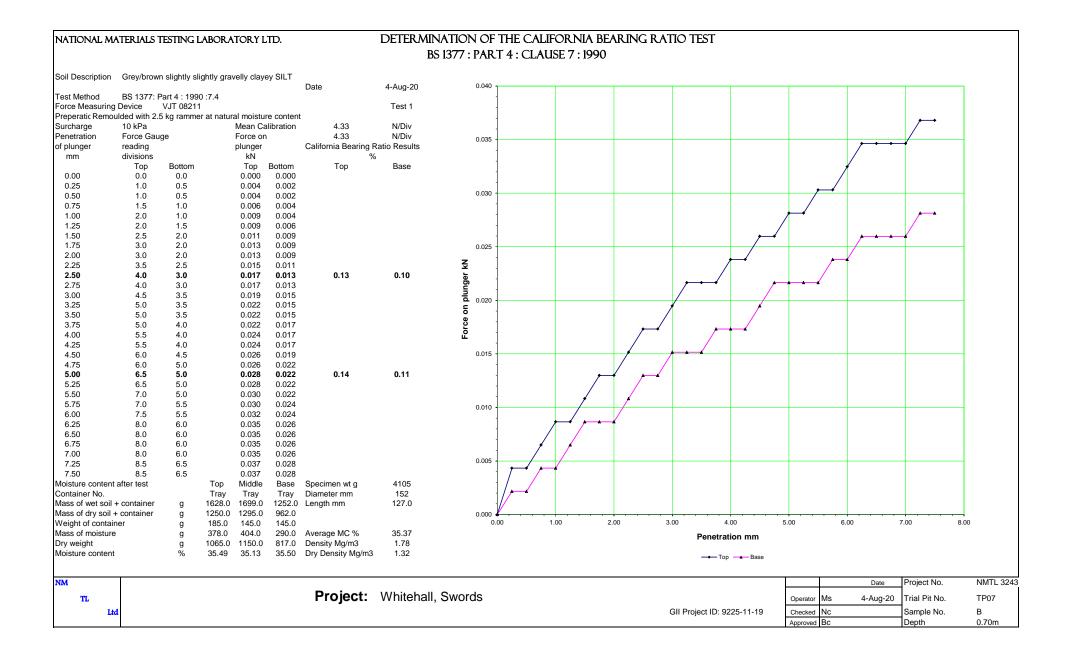


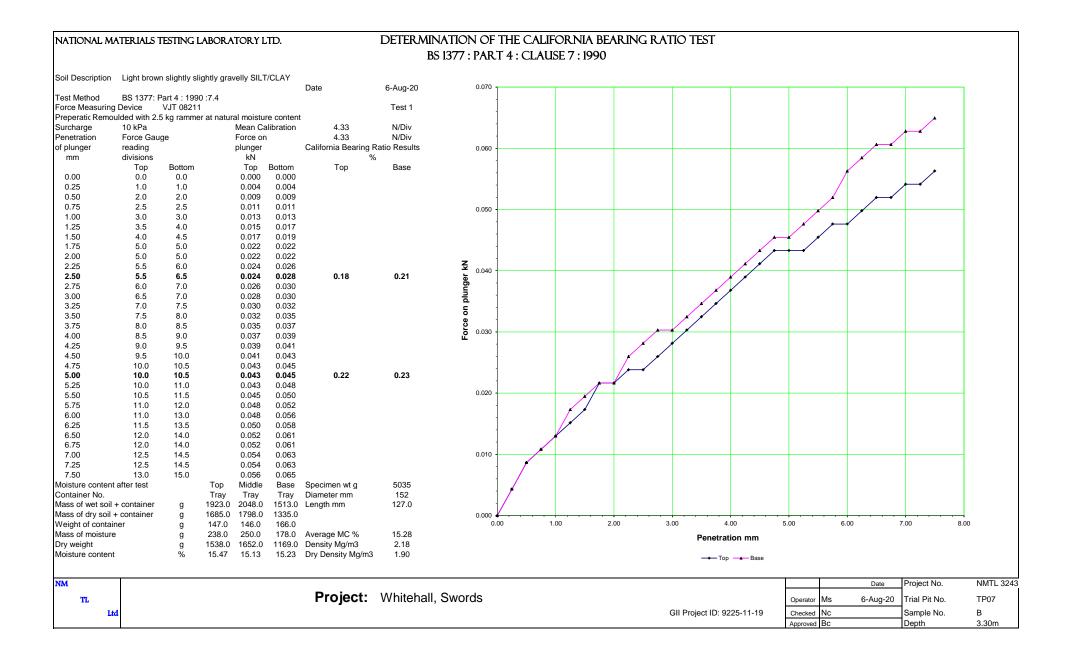

NMTL Ltd

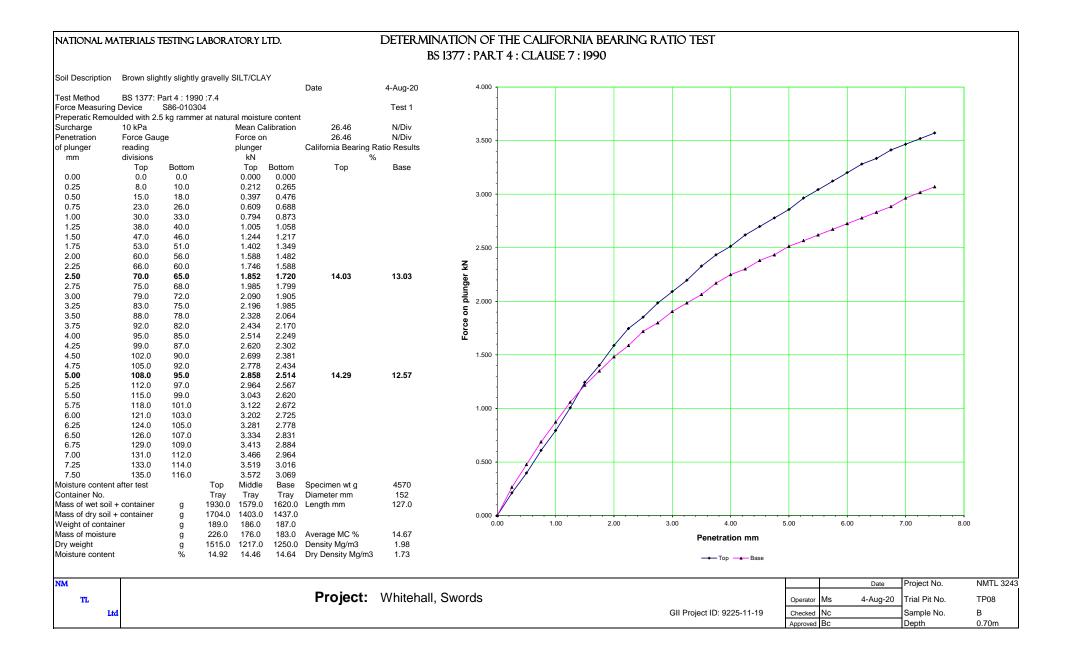

Operator	Checked	Approved
Tch	Nc	Вс

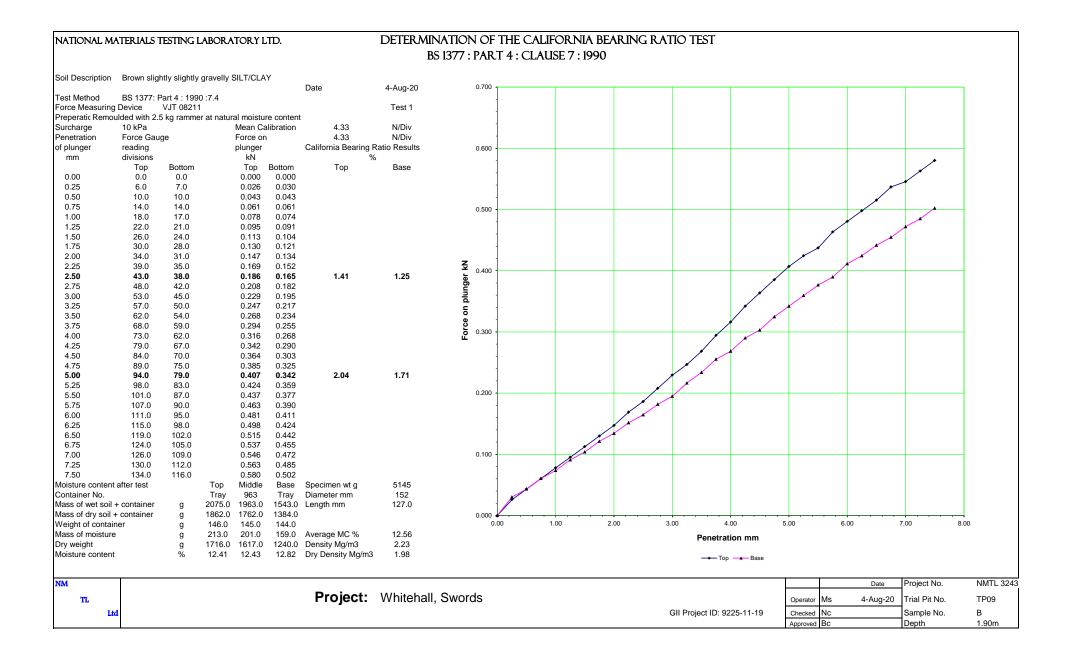


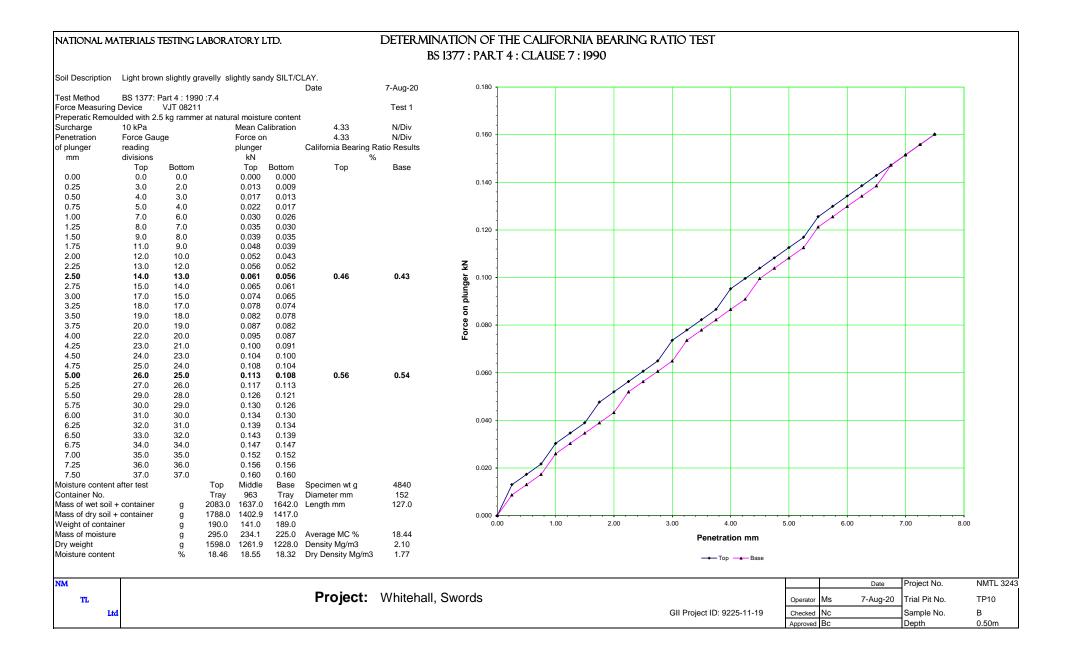












National Materials Testing Laboratory Ltd Unit 18C Tullow Industrial Estate Tel.: 059 9180822

Certificate of Test

Determination of the Undrained Shear Strength in Triaxial Compression BS 1377 : Part 7 : 1990 Clause 8

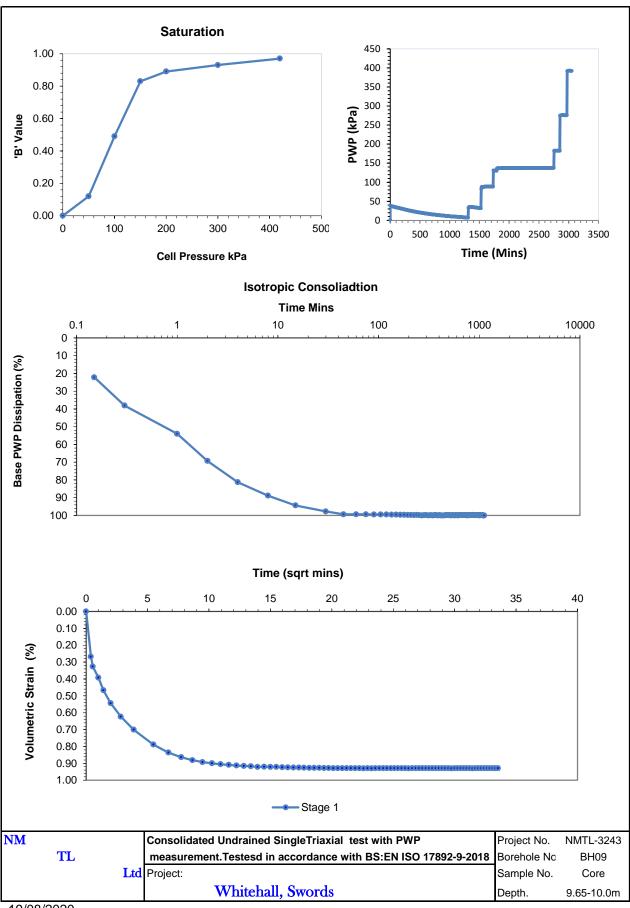
Client Name: Address:	Ground Investigations Catherinestown House Hazelhatch Newcastle, Co. Dublin		Contract: Whitehall, Swords Site Address: N/A GII Project ID: 9225-11-19						
Sample No.:		epth: 10.5-10.90m	File Re	NMTL 3243					
Sample Description	n: Very stiff grey/brown s	slightly sandy slightly gra	velly silty CLAY.						
Location:	Whitehall, Swords		Date Sampled:	N/A					
Sample Type:	Core		Sampled by:	Ground I	nvestigations Ireland I				
	: BH04-C-10.5-10.95m		Sampling Cert. Rec	_					
Source / Supplier:			Date Received:						
Specification:	BS 1377: Part 7: 1990 (Clause 8	Date Tested:						
Specimen			Test						
Length: 205.5	mm Diameter:	102.1 mm	Membrane type:	Latex					
Area: 8192.	1 mm ² Volume:	1683.5 cm ³	Membrane thickness:	0.3	mm				
Mass: 3873.	0 g		Membrane correction:	1.02					
Moisture content:	8.9 %		Sample state:	Undistur	bed				
Bulk density:	2.30 Mg m ⁻³		Number of stages:	Single					
Dry density:	2.11 Mg m ⁻³		Rate of strain:	1.0 % min ⁻¹					
Preparation Metho	d: BS 1377: Part 1: 1990 Cla	use 8 .3.1	Cell pressure: σ_3	130	kPa				
700 (κPa) (κPa) (κPa) (να ¹ -α ³) (κPa) 000 000 000	1.0 2.0 3.0 4	.0 5.0 6.0 7.0	8.0 9.0 10.0 1	1.0 12.0	13.0 14.0 15.0				
		Axial s	rain, ε (%)						
	um Corrected Deviator at Failure:	$(\sigma_1$ - $\sigma_3)_f$	699.6 kPa						
Strain	at Failure:	ε	7.30 %						
Maxim	um Cohesion / Shear Stre	ngth: \mathbf{C}_u	349.8 kPa						
Туре о	f Failure:		Brittle						
Signed			Remarks: Specime	n prepared	with high speed				

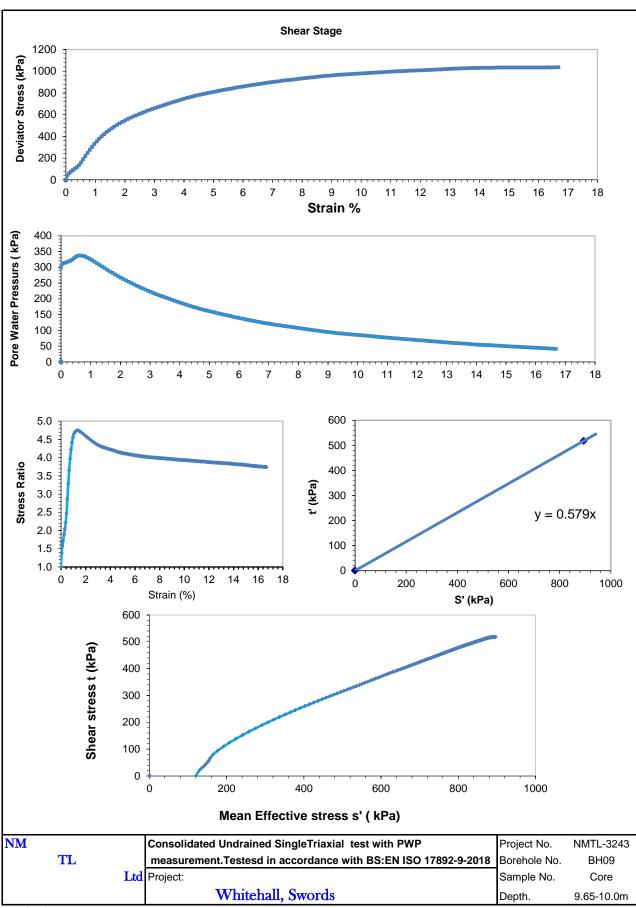
National Materials Testing Laboratory Ltd Unit 18C Tullow Industrial Estate Tel.: 059 9180822

Certificate of Test

Determination of the Undrained Shear Strength in Triaxial Compression BS 1377 : Part 7 : 1990 Clause 8

Client Name: Address:	Ground Investigat Catherinestown H Hazelhatch Newcastle, Co. Du	louse	d Ltd	Contract: White Site Address: GII Project ID: 922	N/A	oras		
Sample No.:	BH05 Core	Depth:	8.30-8.70m	File Re	NMTL 3243			
Sample Description	: Very stiff grey/bro	wn slightly	sandy slightly gra	velly silty CLAY.				
Location:	Whitehall, Swo	ords		Date Sampled:	N/A			
Sample Type:	Core			Sampled by:	Ground I	nvestigations Irelan		
Client Sample Ref.	BH05-C-8.30-8.70	m		Sampling Cert. Re	cd.:	No		
Source / Supplier:	GII			Date Received:	27 July 2	27 July 2020		
Specification:	BS 1377: Part 7: 1	990 Clause	8	Date Tested:	11 Augus	st 2020		
Specimen				Test				
Length: 207.0	mm Diamete	er: 101.1	mm	Membrane type:	Latex			
	mm ² Volume:	1662.1	cm ³	Membrane thickness:	0.3	mm		
Mass: 3886.0				Membrane correction:				
Moisture content:	7.5 %			Sample state:	Undistur	bed		
Bulk density:	2.34 Mg m ⁻³			Number of stages:	Single			
Dry density:	2.18 Mg m ⁻³			Rate of strain:	1.0	% min ⁻¹		
Preparation Method	: BS 1377: Part 1: 199	0 Clause 8 .3	3.1 	Cell pressure: σ_3	100	kPa		
Deviator stress, (G-d3) (kPa) 000 000 000	1.0 2.0	3.0		.0 6.0 7.0	8.0	9.0 10		
			Axiai st	rain, ε (%)				
	m Corrected Deviato	or	$(\sigma_1$ - $\sigma_3)_f$	839.0 kPa				
	t Failure:		ε	3.86 %				
Maximu	m Cohesion / Shear	Strength:	\mathbf{C}_u	419.5 kPa				
	Failure:	on ongui.	Su	Brittle				
Signed		Authorised S	Signatories	Remarks: Specim diamon	d cutting whe			

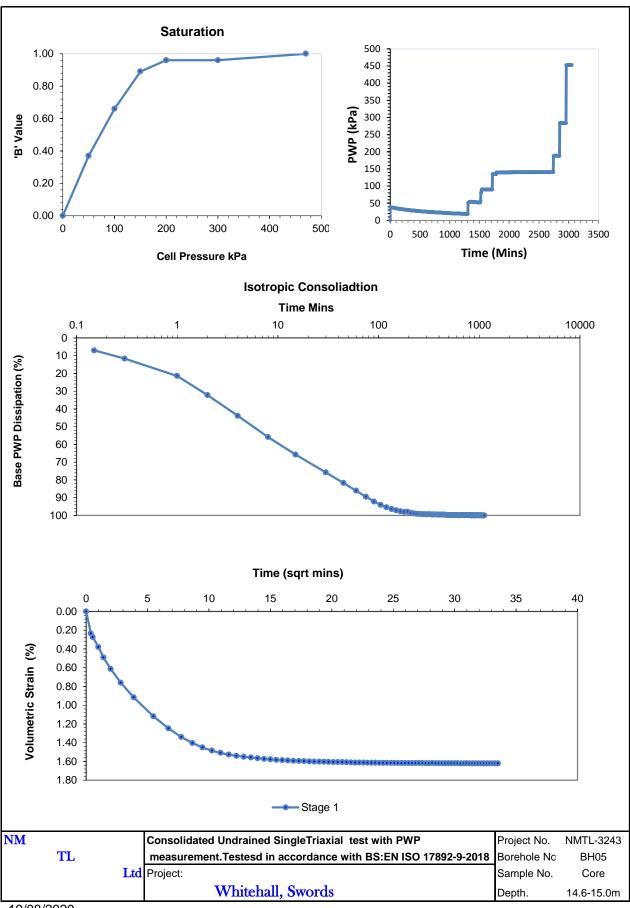

National Materials Testing Laboratory Ltd Unit 18C Tullow Industrial Estate Tel.: 059 9180822

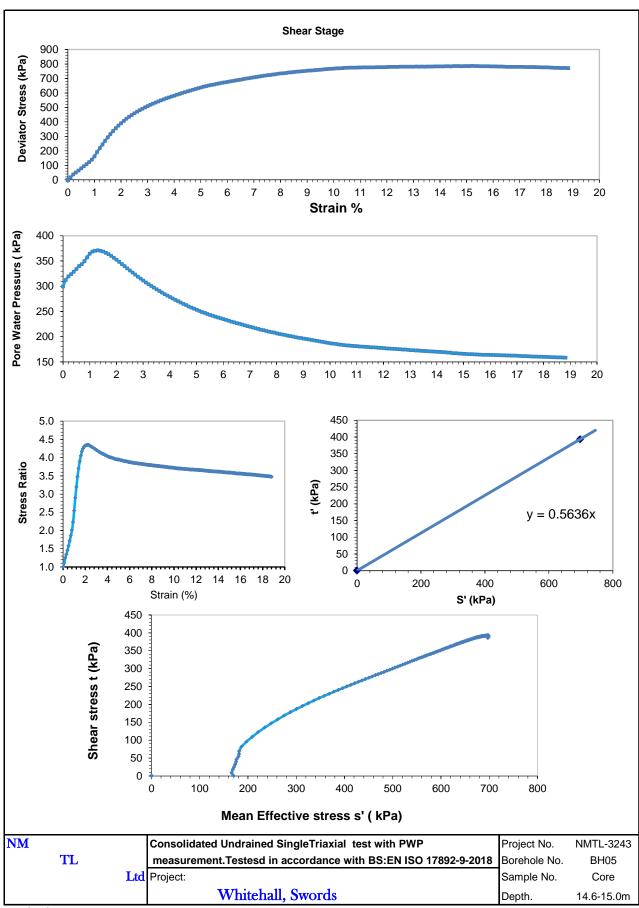

Certificate of Test

Determination of the Undrained Shear Strength in Triaxial Compression BS 1377 : Part 7 : 1990 Clause 8

Client Name: Address:	Ground Investigat Catherinestown H Hazelhatch Newcastle, Co. Du	louse	Ltd	Contract: White Site Address: Gll Project ID: 922	N/A	N/A			
Sample No.:	BH09 Core	Depth:	19.7-20.0m	File Re	NMTL 3243				
Sample Descriptio	n: Very stiff grey slig	ghtly sandy s	slightly gravelly sil	ty CLAY.					
Location:	Whitehall, Swo	ords		Date Sampled:	N/A				
Sample Type:	Core			Sampled by:	Ground I	nvestigations Ireland I			
Client Sample Ref.	: BH09-C-19.7-20.0i	m		Sampling Cert. Red	od.:	No			
Source / Supplier:	GII			Date Received:	27 July 2020				
Specification:	BS 1377: Part 7: 1	990 Clause 8	3	Date Tested:	11 Augus	st 2020			
Specimen				Test					
Length: 202. 5	mm Diamete		mm	Membrane type:	Latex				
Area: 7962.	7 mm ² Volume:	1612.5	cm ³	Membrane thickness:	0.3	mm			
Mass: 3795. 0) g			Membrane correction:	1.18				
Moisture content:	10.9 %			Sample state:	Undistur	bed			
Bulk density:	2.35 Mg m ⁻³			Number of stages:	Single				
Dry density:	2.12 Mg m ⁻³			Rate of strain:	1.0	% min ⁻¹			
Preparation Metho	d: BS 1377: Part 1: 199	00 Clause 8 .3.	1	Cell pressure: σ_3	220	kPa			
Deviator stress, (σ_1 - σ_3) (kPa)									
0.0	1.0 2.0 3.0	4.0 5.			11.0 12.0	13.0 14.0 15.0			
-	1.0 2.0 3.0	4.0 5.		8.0 9.0 10.0 ain, ε (%)	11.0 12.0	13.0 14.0 15.0			
0.0 Maximu	ım Corrected Deviato				11.0 12.0	13.0 14.0 15.0			
0.0 Maximu Stress			Axial stra	ain, ɛ (%)	11.0 12.0	13.0 14.0 15.0			
0.0 Maximu Stress Strain a	um Corrected Deviato at Failure: at Failure:	or	Axial str $(\sigma_1\text{-}\sigma_3)_f$	ain, ε (%) 1042.9 kPa 8.40 %	11.0 12.0	13.0 14.0 15.0			
Maximu Stress Strain a	um Corrected Deviato	or	Axial strands $(\sigma_1 - \sigma_3)_f$	ain, ε (%)	11.0 12.0	13.0 14.0 15.0			

		SUMMARY OF TEST	RESULTS			
	·	Initial			Initial	Final
Hall Effect Gauge length	mm	n/a	Bulk Density	Mg/m3	2.32	2.35
Specimen Length	mm	202.00	Dry Density	Mg/m3	2.14	2.16
Specimen Diameter	mm	101.24	Moisture	%	8.64	9.01
Area	mm2	8049.17	Saturation	%	88.80	96.92
Volume	CC	1625.93	Sg(Assumed)	2.70		
Initial Voids ratio	е	0.2627				
Saturation Stage						
Test Stage	Cell		Pore Pressure P	arameter 'B'		
· ·	Pressure		Base			
	(kPa)					
0	0		0			
1	50		0.12			
2	100		0.49			
3	150		0.83			
4	200		0.89			
5	300		0.89			
6	420		0.93			
0	420		0.97			
Isotropic Consolidatio	n Stage					
	n olago	Stage 1				
Cell Pressure	kPa	420				
Pore Pressure	kPa	392.4				
Back Pressure	kPa	300				
Drainage Method		End & Radial Boundary				
t100 (min)	One	22.1				
Coef. Of Consolidation Cv	m2/year	9.507				
Coef. Of Compressibility Mv	m2/MN	0.100				
Permeability k	m/sec	2.935E-10				
		Stage 1				
		Stage 1 1035.7				
External Axial Strain (%)						
External Axial Strain (%) Shear Stress (kPa)		1035.7				
External Axial Strain (%) Shear Stress (kPa) Peak Stress Ratio		1035.7 16.33				
External Axial Strain (%) Shear Stress (kPa) Peak Stress Ratio		1035.7 16.33 517.8				
External Axial Strain (%) Shear Stress (kPa) Peak Stress Ratio Pore Water Pressure (kPa)		1035.7 16.33 517.8 4.75				
External Axial Strain (%) Shear Stress (kPa) Peak Stress Ratio Pore Water Pressure (kPa) Radial Effective Stress (kPa)		1035.7 16.33 517.8 4.75 -256.6				
Deviator Stress (kPa) External Axial Strain (%) Shear Stress (kPa) Peak Stress Ratio Pore Water Pressure (kPa) Radial Effective Stress (kPa) Axial Effective Stress (kPa)		1035.7 16.33 517.8 4.75 -256.6 376.6				
External Axial Strain (%) Shear Stress (kPa) Peak Stress Ratio Pore Water Pressure (kPa) Radial Effective Stress (kPa) Axial Effective Stress (kPa) Effective angle of friction (Deg		1035.7 16.33 517.8 4.75 -256.6 376.6 1412.3				
External Axial Strain (%) Shear Stress (kPa) Peak Stress Ratio Pore Water Pressure (kPa) Radial Effective Stress (kPa) Axial Effective Stress (kPa)	grees)	1035.7 16.33 517.8 4.75 -256.6 376.6 1412.3 35.4				
External Axial Strain (%) Shear Stress (kPa) Peak Stress Ratio Pore Water Pressure (kPa) Radial Effective Stress (kPa) Axial Effective Stress (kPa) Effective angle of friction (Decohesion c' (kPa) Rate of strain mm/min	grees) Assumed	1035.7 16.33 517.8 4.75 -256.6 376.6 1412.3 35.4 0	y gravelly silty CLAY.			
External Axial Strain (%) Shear Stress (kPa) Peak Stress Ratio Pore Water Pressure (kPa) Radial Effective Stress (kPa) Axial Effective Stress (kPa) Effective angle of friction (Decohesion c' (kPa) Rate of strain mm/min	grees) Assumed	1035.7 16.33 517.8 4.75 -256.6 376.6 1412.3 35.4 0 0.0067 ey/brown slightly sand	y gravelly silty CLAY.			
External Axial Strain (%) Shear Stress (kPa) Peak Stress Ratio Pore Water Pressure (kPa) Radial Effective Stress (kPa) Axial Effective Stress (kPa) Effective angle of friction (Deg Cohesion c' (kPa) Rate of strain mm/min Sample Description	grees) Assumed Very stiff gr Plastic Fail	1035.7 16.33 517.8 4.75 -256.6 376.6 1412.3 35.4 0 0.0067 ey/brown slightly sand			Project No.	NMTL-324
External Axial Strain (%) Shear Stress (kPa) Peak Stress Ratio Pore Water Pressure (kPa) Radial Effective Stress (kPa) Axial Effective Stress (kPa) Effective angle of friction (Decohesion c' (kPa) Rate of strain mm/min Sample Description	grees) Assumed Very stiff gr Plastic Faile Consolidate	1035.7 16.33 517.8 4.75 -256.6 376.6 1412.3 35.4 0 0.0067 ey/brown slightly sand	axial test with PWP	892-9-2018	Project No. Borehole No.	NMTL-324 BH09
External Axial Strain (%) Shear Stress (kPa) Peak Stress Ratio Pore Water Pressure (kPa) Radial Effective Stress (kPa) Axial Effective Stress (kPa) Effective angle of friction (Decohesion c' (kPa) Rate of strain mm/min Sample Description NM TL	grees) Assumed Very stiff gr Plastic Faile Consolidate	1035.7 16.33 517.8 4.75 -256.6 376.6 1412.3 35.4 0 0.0067 ey/brown slightly sand	axial test with PWP	892-9-2018		




SPECIMEN AFTER TEST

Soil Description Very stiff grey/brown slightly sandy gravelly silty CLAY.

NM	Consolidated Undrained SingleTriaxial test with PWP	Project No.	NMTL-3243
TL	measurement.Testesd in accordance with BS:EN ISO 17892-9-2018	Borehole No.	BH09
	Ltd Project:	Sample No.	Core
	Whitehall, Swords	Depth.	9.65-10.0m

		SUMMARY OF TEST R	ESULTS			
		Initial			Initial	Final
Hall Effect Gauge length	mm	n/a	Bulk Density	Mg/m3	2.30	2.34
Specimen Length	mm	201.83	Dry Density	Mg/m3	2.08	2.12
Specimen Diameter	mm	101.18	Moisture	%	10.28	10.40
Area	mm2	8040.69	Saturation	%	93.71	101.90
Volume	СС	1622.88	Sg(Assumed)	2.70		
Initial Voids ratio	е	0.2962				
Saturation Stage						
Test Stage	Cell		Pore Pressure P	Parameter 'B'		
	Pressure		Base			
	(kPa)					
0	0		0			
1	50		0.37			
2	100		0.66			
3	150		0.89			
4	200		0.96			
5	300		0.96			
6	470		1.00			
Isotropic Consolidation	n Stage					
ison opic consolidation	ii Otage	Stage 1				
Cell Pressure	kPa	470				
Pore Pressure	kPa	452.9				
Back Pressure	kPa	300				
Drainage Method	One	End & Radial Boundary				
t100 (min)		56.3				
Coef. Of Consolidation Cv	m2/year	3.733				
Coef. Of Compressibility Mv	m2/MN	0.104				
Permeability k	m/sec	1.207E-10				
Devilates Otros - (UD.)		Stage 1				
Deviator Stress (kPa)		786.7				
External Axial Strain (%)		15.22				
Shear Stress (kPa)		393.3				
Peak Stress Ratio		4.35				
Pore Water Pressure (kPa)		-134.6				
Radial Effective Stress (kPa)		304.6				
Axial Effective Stress (kPa)	,	1091.3				
Effective angle of friction (De	-	34.3				
Cohesion c' (kPa)	Assumed	0				
Rate of strain mm/min		0.0067		01.437		
Sample Description		ey/brown slightly gravel	ly slightly sandy silty	CLAY.		
NIM	Plastic Fail				In a second	A 18 4000
NM		ed Undrained SingleTria			Project No.	NMTL-324
TL		ent.Testesd in accordan	ce with BS:EN ISO 17	7892-9-2018	Borehole No.	BH05
Lto	Project:	Whitehall, Sword			Sample No.	Core
					Depth.	14.6-15.0n

SPECIMEN AFTER TEST

Soil Description Very stiff grey/brown slightly gravelly slightly sandy silty CLAY.

NM	Consolidated Undrained SingleTriaxial test with PWP	Project No.	NMTL-3243
TL	measurement.Testesd in accordance with BS:EN ISO 17892-9-2018	Borehole No.	BH05
	Ltd Project:	Sample No.	Core
	Whitehall, Swords	Depth.	14.6-15.0m

LABORATORY REPORT

4043

Contract Number: PSL20/3995

Report Date: 13 August 2020

Client's Reference: 9429-02-20

Client Name: Ground Investigations Ireland Ltd

Catherinestown House Hazelhatch Road

Newcastle Co Dublin D22 YD52

For the attention of: Chris Byrne

Contract Title: Swords Road, Whitehall

Date Received: 5/8/2020 Date Commenced: 5/8/2020 Date Completed: 13/8/2020

Notes: Opinions and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced other than in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

R Gunson A Watkins R Berriman (Director) (Director) (Quality Manager)

L Knight S Eyre S Royle

(Senior Technician) (Senior Technician) (Laboratory Manager)

Page 1 of

5 – 7 Hexthorpe Road, Hexthorpe,

Doncaster DN4 0AR tel: +44 (0)844 815 6641 fax: +44 (0)844 815 6642

e-mail: rgunson@prosoils.co.uk awatkins@prosoils.co.uk

DETERMINATION OF UNCONFINED COMPRESSIVE STRENGTH

ISRM Suggested Methods, pp 111 –116, 1981.

Hole Number	Sample Number		Top Depth (m)	Base Depth (m)	Sample Diameter (mm)	Sample Length (mm)	Height Ratio	Initial Mass (g)	Bulk Density (Mg/m)	Moisture Content (%)	Dry Density (Mg/m)	Load Failure (kN)	UCS (MPa)	Failure Mode	Date Tested	Remarks
BH05		С	23.30	23.75	100	180	1.8	3834	2.71	0.9	2.69	290.2	36.9	Brittle	07/08/20	
BH05		C	32.30	32.75	100	180	1.8	4014	2.84	0.5	2.82	826.5	105.2	Brittle	07/08/20	
BH09		C	32.85	33.10	100	145	1.5	3194	2.80	0.4	2.79	318.7	40.6	Brittle	07/08/20	

PSI	
Professional Soils Laboratory	

Swords Road, Whitehall

Contract No:	
PSL20/3995	
Client Ref:	
9429-02-20	

SUMMARY OF POINT LOAD TEST RESULTS

ISRM Suggested Methods: 2007

Borehole Number	Depth (m)	Sample Ref	Test Type	Orientation		nsions m)	Area	D _e ²	D _e	Failure 1	Load (P)	I _s	Corr Fac	I_{s50}	Failure Type	Remarks
		_	JF	Par / Perp	W	D	(mm2)		(mm)	(Mpa)	(kN)	(MPa)	F	(MPa)	J.F.	
BH05	23.30		A	Perp	100	50	5000	6366.20	79.79	-	7.34	1.15	1.234	1.42	Valid	
BH05	28.25		A	Perp	100	65	6500	8276.06	90.97	-	8.52	1.03	1.309	1.35	Valid	
BH05	32.30		A	Perp	100	60	6000	7639.44	87.40	-	13.40	1.75	1.286	2.26	Valid	
BH05	35.20		A	Perp	100	60	6000	7639.44	87.40	ı	24.69	3.23	1.286	4.16	Valid	
BH09	33.60		A	Perp	100	63	6300	8021.41	89.56	ı	5.11	0.64	1.300	0.83	Valid	

*Note All testing carried out on samples at as received water content

Par = parallel, Perp = perpendicular, U = Random

A = Axial, D = Diametral, I = Irregular

Swords Road, Whitehall

Contract No:
PSL20/3995
Client Ref:
9429-02-20

SUMMARY OF POINT LOAD TEST RESULTS

ISRM Suggested Methods: 2007

Borehole Number	Depth (m)	Sample Ref	Test Type	Orientation	Dimer (m	nsions m)	D _e ²	D _e	Failur	e Load	I _s	Corr Fac	I_{s50}	Failure Type	Remarks
	()		- 3 P	Par / Perp	L	D		(mm)	(Mpa)	(kN)	(MPa)	F	(MPa)	- J P -	
BH05	23.30		D	Par	-	100	10000	100.00	ı	33.19	3.319	1.366	4.53	Valid	
BH05	28.25		D	Par	-	100	10000	100.00	-	19.87	1.987	1.366	2.71	Valid	
BH05	32.30		D	Par	-	100	10000	100.00	-	44.65	4.465	1.366	6.10	Valid	
BH05	35.20		D	Par	-	100	10000	100.00	-	36.07	3.607	1.366	4.93	Valid	
BH09	33.60		D	Par	-	100	10000	100.00	-	1.84	0.184	1.366	0.25	Valid	

Nov 15

*Note All testing carried out on samples at as received water content

Par = parallel, Perp = perpendicular, U = Random

Swords Road, Whitehall

Contract No:
PSL20/3995
Client Ref:
9429-02-20

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA P: +44 (0) 1244 833780

F: +44 (0) 1244 833781

W: www.element.com

Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co. Dublin Ireland

Attention: Mike Sutton

Date: 30th March, 2020

Your reference: 9429-02-20

Our reference : Test Report 20/3675 Batch 1

Location: Whitehall, Swords Road Extension

Date samples received : 9th March, 2020

Status: Final report

Issue:

Eight samples were received for analysis on 9th March, 2020 of which five were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

Phil Sommerton BSc Senior Project Manager

Please include all sections of this report if it is reproduced

Client Name: Ground Investigations Ireland

Reference: 9429-02-20

Location: Whitehall, Swords Road Extension

Contact: Mike Sutton EMT Job No: 20/3675

Report : Solid

	20/00/0							-		
EMT Sample No.	1-3	4-6	7-9	16-18	22-24					
Sample ID	TP01	TP02	TP03	TP07	TP10					
Depth	2.4	0.5	0.5	0.7	0.5			Please se	e attached n	otos for all
COC No / misc									ations and a	
Containers	VJT	VJT	VJT	VJT	VJT					
Sample Date		05/03/2020	05/03/2020		05/03/2020					
Sample Type	Soil	Soil	Soil	Soil	Soil					
Batch Number	1	1	1	1	1			LOD/LOR	Units	Method
Date of Receipt	09/03/2020	09/03/2020	09/03/2020	09/03/2020	09/03/2020					No.
Antimony	2	2	2	3	2			<1	mg/kg	TM30/PM15
Arsenic #	8.8	9.4	13.0	19.4	10.7			<0.5	mg/kg	TM30/PM15
Barium #	85	57	152	111	59			<1	mg/kg	TM30/PM15
Cadmium#	2.4	2.3	2.9	2.2	1.5			<0.1	mg/kg	TM30/PM15
Coppor#	27.3 32	25.5 27	43.2 31	43.9 63	42.0 27			<0.5 <1	mg/kg	TM30/PM15 TM30/PM15
Copper# Lead#	16	15	29	104	28			<1 <5	mg/kg mg/kg	TM30/PM15
Mercury#	<0.1	<0.1	<0.1	<0.1	<0.1			<0.1	mg/kg	TM30/PM15
Molybdenum #	4.7	3.3	4.6	4.9	4.0			<0.1	mg/kg	TM30/PM15
Nickel [#]	40.1	38.3	45.6	57.1	34.1			<0.7	mg/kg	TM30/PM15
Selenium #	8	<1	<1	<1	<1			<1	mg/kg	TM30/PM15
Total Sulphate as SO4 #	1085	359	528	708	354			<50	mg/kg	TM50/PM29
Zinc#	84	64	145	151	76			<5	mg/kg	TM30/PM15
PAH MS										
Naphthalene #	<0.04	<0.04	<0.04	<0.04	0.19			<0.04	mg/kg	TM4/PM8
Acenaphthylene	<0.03	<0.03	<0.03	<0.03	<0.03			<0.03	mg/kg	TM4/PM8
Acenaphthene #	<0.05	<0.05	<0.05	<0.05	0.06			<0.05	mg/kg	TM4/PM8
Fluorene #	<0.04	<0.04 <0.03	<0.04	<0.04 0.10	0.06 0.28			<0.04 <0.03	mg/kg	TM4/PM8 TM4/PM8
Phenanthrene # Anthracene #	<0.04	<0.03	<0.03	<0.04	0.28			<0.03	mg/kg mg/kg	TM4/PM8
Fluoranthene #	<0.03	<0.03	<0.03	0.10	0.23			<0.03	mg/kg	TM4/PM8
Pyrene #	<0.03	<0.03	<0.03	0.09	0.16			<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene#	<0.06	<0.06	<0.06	0.09	0.10			<0.06	mg/kg	TM4/PM8
Chrysene #	<0.02	<0.02	<0.02	0.09	0.08			<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene #	<0.07	<0.07	<0.07	0.18	0.14			<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene #	<0.04	<0.04	<0.04	0.09	0.07			<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene	<0.04	<0.04	<0.04	0.06	<0.04			<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene #	<0.04	<0.04	<0.04	<0.04	<0.04			<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene #	<0.04	<0.04	<0.04	0.06	<0.04			<0.04	mg/kg	TM4/PM8
Coronene	<0.04	<0.04	<0.04	<0.04	<0.04			<0.04	mg/kg	TM4/PM8
PAH 6 Total #	<0.22	<0.22	<0.22	0.49	0.44			<0.22	mg/kg	TM4/PM8
PAH 17 Total	<0.64	<0.64	<0.64	0.86	1.46			<0.64	mg/kg	TM4/PM8 TM4/PM8
Benzo(b)fluoranthene Benzo(k)fluoranthene	<0.05 <0.02	<0.05 <0.02	<0.05 <0.02	0.13	0.10			<0.05 <0.02	mg/kg mg/kg	TM4/PM8
Benzo(j)fluoranthene	<1	<1	<1	<1	<1			<1	mg/kg	TM4/PM8
PAH Surrogate % Recovery	82	94	98	96	99			<0	%	TM4/PM8
3,			-	-	-			-		
Methyl Tertiary Butyl Ether #	<2	<2	<2	<2	<2			<2	ug/kg	TM15/PM10
Benzene #	<3	<3	<3	<3	<3			<3	ug/kg	TM15/PM10
Toluene #	<3	<3	<3	-	<3			<3	ug/kg	TM15/PM10
Ethylbenzene #	<3	<3	<3	<3	<3			<3	ug/kg	TM15/PM10
m/p-Xylene #	<5	<5	<5	<5	<5			<5	ug/kg	TM15/PM10
o-Xylene [#]	<3	<3	<3	<3	<3			<3	ug/kg	TM15/PM10

Client Name: Ground Investigations Ireland

Reference: 9429-02-20

Location: Whitehall, Swords Road Extension

Contact: Mike Sutton EMT Job No: 20/3675

Report : Solid

EMT Sample No.	1-3	4-6	7-9	16-18	22-24					
Sample ID	TP01	TP02	TP03	TP07	TP10					
Depth	2.4	0.5	0.5	0.7	0.5			Please se	e attached n	otes for all
COC No / misc									ations and a	
Containers	VJT	VJT	VJT	VJT	VJT					
Sample Date			05/03/2020		05/03/2020					
Sample Type	Soil	Soil	Soil	Soil	Soil					
Batch Number	1	1	1	1	1			LOD/LOR	Units	Method No.
Date of Receipt	09/03/2020	09/03/2020	09/03/2020	09/03/2020	09/03/2020					NO.
Surrogate Recovery Toluene D8	91	95	97	88	92			<0	%	TM15/PM10
Surrogate Recovery 4-Bromofluorobenzene	65	89	93	62	78			<0	%	TM15/PM10
Mineral Oil (C10-C40)	<30	<30	<30	32	<30			<30	mg/kg	TM5/PM8/PM16
Willional Oil (O10 O40)	400	100	400	02	400			400	mg/kg	
TPH CWG										
Aliphatics										
>C5-C6#	<0.1 ^{SV}	<0.1	<0.1	<0.1 ^{SV}	<0.1			<0.1	mg/kg	TM36/PM12
>C6-C8#	<0.1 ^{sv}	<0.1	<0.1	<0.1 ^{sv}	<0.1			<0.1	mg/kg	TM36/PM12
>C8-C10	<0.1 sv	<0.1	<0.1	<0.1 ^{sv}	<0.1			<0.1	mg/kg	TM36/PM12
>C10-C12#	<0.2	<0.2	<0.2	<0.2	<0.2			<0.2	mg/kg	TM5/PM8/PM16
>C12-C16#	<4	<4	<4	<4	<4			<4	mg/kg	TM5/PM8/PM16
>C16-C21 #	<7	<7	<7	<7	<7			<7	mg/kg	TM5/PM8/PM16
>C21-C35#	<7	<7	<7	32	<7			<7	mg/kg	TM5/PM8/PM16
>C35-C40 Total aliphatics C5-40	<7 <26	<7 <26	<7 <26	<7 32	<7 <26			<7 <26	mg/kg	TM5/PM8/PM16 TM5/TM38/PM8/PM12/PM16
>C6-C10	<0.1 sv	<0.1	<0.1	<0.1 sv	<0.1			<0.1	mg/kg mg/kg	TM36/PM12
>C10-C25	<10	<10	<10	<10	<10			<10	mg/kg	TM5/PM8/PM16
>C25-C35	<10	<10	<10	27	<10			<10	mg/kg	TM5/PM8/PM16
Aromatics									0 0	
>C5-EC7#	<0.1 ^{sv}	<0.1	<0.1	<0.1 ^{SV}	<0.1			<0.1	mg/kg	TM36/PM12
>EC7-EC8#	<0.1 ^{SV}	<0.1	<0.1	<0.1 ^{SV}	<0.1			<0.1	mg/kg	TM36/PM12
>EC8-EC10#	<0.1 sv	<0.1	<0.1	<0.1 ^{sv}	<0.1			<0.1	mg/kg	TM36/PM12
>EC10-EC12#	<0.2	<0.2	<0.2	<0.2	<0.2			<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16#	<4	<4	<4	<4	<4			<4	mg/kg	TM5/PM8/PM16
>EC16-EC21 #	<7	<7	<7	<7	<7			<7	mg/kg	TM5/PM8/PM16
>EC21-EC35 #	<7	<7	<7	<7	<7			<7	mg/kg	TM5/PM8/PM16
>EC35-EC40	<7	<7	<7	<7	<7			<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-40	<26	<26	<26	<26	<26			<26	mg/kg	TM5/TM38/PM8/PM12/PM16
Total aliphatics and aromatics(C5-40)	<52 <0.1	<52	<52	<52 <0.1	<52			<52	mg/kg	TM5/TM38/PM8/PM12/PM16
>EC6-EC10# >EC10-EC25	<0.1	<0.1 <10	<0.1 <10	<0.1	<0.1 <10			<0.1 <10	mg/kg	TM36/PM12 TM5/PM8/PM16
>EC25-EC35	<10	<10	<10	<10	<10			<10	mg/kg mg/kg	TM5/PM8/PM16
22020 2000	710	V10	V10	V10	V10			110	mg/kg	
PCB 28 #	<5	<5	<5	<5	<5			<5	ug/kg	TM17/PM8
PCB 52#	<5	<5	<5	<5	<5			<5	ug/kg	TM17/PM8
PCB 101 #	<5	<5	<5	<5	<5			<5	ug/kg	TM17/PM8
PCB 118#	<5	<5	<5	<5	<5			<5	ug/kg	TM17/PM8
PCB 138#	<5	<5	<5	<5	<5			<5	ug/kg	TM17/PM8
PCB 153#	<5	<5	<5	<5	<5			<5	ug/kg	TM17/PM8
PCB 180#	<5	<5	<5	<5	<5			<5	ug/kg	TM17/PM8
Total 7 PCBs#	<35	<35	<35	<35	<35			<35	ug/kg	TM17/PM8
Notural Maiature Cantant	0.0	10.5	25.0	20.0	14.0			-0.4	0/	DM4/DM6
Natural Moisture Content	9.9	16.5	25.6	26.8	14.6			<0.1	%	PM4/PM0

Client Name: Ground Investigations Ireland

Reference: 9429-02-20

Location: Whitehall, Swords Road Extension

Contact: Mike Sutton EMT Job No: 20/3675

Report : Solid

ZIII OOD NO:	20/0010					 	 			
EMT Sample No.	1-3	4-6	7-9	16-18	22-24					
Sample ID	TP01	TP02	TP03	TP07	TP10					
Depth	2.4	0.5	0.5	0.7	0.5			Please se	e attached n	otes for all
COC No / misc									ations and a	
Containers	VJT	VJT	VJT	VJT	VJT					
Sample Date	05/03/2020	05/03/2020	05/03/2020	05/03/2020	05/03/2020					
Sample Type	Soil	Soil	Soil	Soil	Soil					
Batch Number	1	1	1	1	1			LOD/LOR	Units	Method
Date of Receipt	09/03/2020	09/03/2020	09/03/2020	09/03/2020	09/03/2020			LOD/LOR	Units	No.
Moisture Content (% Wet Weight)	9.0	14.1	20.4	21.1	12.7			<0.1	%	PM4/PM0
Ammoniacal Nitrogen as N	<0.6	<0.6	<0.6	<0.6	<0.6			<0.6	mallea	TM38/PM20
Hexavalent Chromium #	<0.3	<0.3	<0.3	<0.3	<0.3			<0.3	mg/kg mg/kg	TM38/PM20
Sulphate as SO4 (2:1 Ext) #	0.0583	0.0212	0.0772	0.0207	0.0301			<0.0015	g/I	TM38/PM20
Chromium III	27.3	25.5	43.2	43.9	42.0			<0.5	mg/kg	NONE/NONE
Total Cyanide #	<0.5	<0.5	0.8	0.9	-0.5			-0.5	ma/!	TM89/PM45
Total Cyanide "	<0.5	<0.5	0.8	0.9	<0.5			<0.5	mg/kg	1 M89/PM45
Total Organic Carbon #	0.70	0.51	0.82	3.73	0.68			<0.02	%	TM21/PM24
Sulphide	<10	<10	<10	<10	<10			<10	mg/kg	TM107/PM45
Elemental Sulphur	3	<1	<1	4	2			<1	mg/kg	TM108/PM114
pH [#]	8.66	8.55	8.24	8.25	8.55			<0.01	pH units	TM73/PM11
Mass of raw test portion	0.1007	0.1079	0.1121	0.115	0.1058				kg	NONE/PM17
Mass of dried test portion	0.09	0.09	0.09	0.09	0.09				kg	NONE/PM17

Client Name: Ground Investigations Ireland

Reference: 9429-02-20

Location: Whitehall, Swords Road Extension

Contact: Mike Sutton EMT Job No: 20/3675

Report: CEN 10:1 1 Batch

EMT Sample No.	1-3	4-6	7-9	16-18	22-24					
Sample ID	TP01	TP02	TP03	TP07	TP10					
Depth	2.4	0.5	0.5	0.7	0.5			Diverse		
COC No / misc									e attached n ations and a	
Containers	VJT	VJT	VJT	VJT	VJT					
Sample Date		05/03/2020			05/03/2020					
Sample Type	Soil	Soil	Soil	Soil	Soil				ı	
Batch Number	1	1	1	1	1			LOD/LOR	Units	Method
Date of Receipt	09/03/2020	09/03/2020	09/03/2020	09/03/2020	09/03/2020					No.
Dissolved Antimony#	<0.002	<0.002	<0.002	<0.002	0.003			<0.002	mg/l	TM30/PM17
Dissolved Antimony (A10) #	<0.02	<0.02	<0.02	<0.02	0.03			<0.02	mg/kg	TM30/PM17
Dissolved Arsenic#	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025			<0.0025	mg/l	TM30/PM17
Dissolved Arsenic (A10) #	<0.025	<0.025	<0.025	<0.025	<0.025			<0.025	mg/kg	TM30/PM17
Dissolved Barium #	0.004	<0.003	<0.003	0.007	0.003			<0.003	mg/l	TM30/PM17
Dissolved Barium (A10) #	0.04	<0.03	<0.03	0.07	0.03			<0.03	mg/kg	TM30/PM17
Dissolved Cadmium #	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005			<0.0005	mg/l	TM30/PM17
Dissolved Cadmium (A10) #	<0.005	<0.005	<0.005	<0.005	<0.005			<0.005	mg/kg	TM30/PM17
Dissolved Chromium #	<0.0015 <0.015	<0.0015 <0.015	<0.0015 <0.015	<0.0015 <0.015	<0.0015 <0.015			<0.0015 <0.015	mg/l	TM30/PM17 TM30/PM17
Dissolved Chromium (A10) * Dissolved Copper*	<0.015	<0.015	<0.015	<0.015	<0.015			<0.015	mg/kg mg/l	TM30/PM17
Dissolved Copper (A10) #	<0.07	<0.07	<0.07	<0.07	<0.07			<0.07	mg/kg	TM30/PM17
Dissolved Copper (A10) Dissolved Lead #	<0.005	<0.005	<0.005	<0.005	<0.005			<0.005	mg/l	TM30/PM17
Dissolved Lead (A10)#	<0.05	<0.05	<0.05	<0.05	<0.05			<0.05	mg/kg	TM30/PM17
Dissolved Molybdenum #	0.031	0.013	0.002	0.008	0.010			<0.002	mg/l	TM30/PM17
Dissolved Molybdenum (A10) #	0.31	0.13	0.02	0.08	0.10			<0.02	mg/kg	TM30/PM17
Dissolved Nickel #	<0.002	<0.002	<0.002	<0.002	<0.002			<0.002	mg/l	TM30/PM17
Dissolved Nickel (A10) #	<0.02	<0.02	<0.02	<0.02	<0.02			<0.02	mg/kg	TM30/PM17
Dissolved Selenium#	0.005	<0.003	<0.003	<0.003	<0.003			<0.003	mg/l	TM30/PM17
Dissolved Selenium (A10) #	0.05	<0.03	<0.03	<0.03	<0.03			<0.03	mg/kg	TM30/PM17
Dissolved Zinc#	<0.003	<0.003	<0.003	0.004	0.003			<0.003	mg/l	TM30/PM17
Dissolved Zinc (A10) #	<0.03	<0.03	<0.03	0.04	0.03			<0.03	mg/kg	TM30/PM17
Mercury Dissolved by CVAF#	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001			<0.00001	mg/l	TM61/PM0
Mercury Dissolved by CVAF#	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001			<0.0001	mg/kg	TM61/PM0
Phenol	<0.01	<0.01	<0.01	<0.01	<0.01			<0.01	mg/l	TM26/PM0
Phenol	<0.1	<0.1	<0.1	<0.1	<0.1			<0.1	mg/kg	TM26/PM0
Fluoride	0.5	0.5	0.3	0.5	0.4			<0.3	ma/l	TM173/PM0
Fluoride	5	5	3	5	4			<0.3	mg/l mg/kg	TM173/PM0 TM173/PM0
	, , , , , , , , , , , , , , , , , , ,				,			.0	9/1/9	57. 1710
Sulphate as SO4 #	4.8	4.1	20.0	4.3	13.7			<0.5	mg/l	TM38/PM0
Sulphate as SO4#	48	41	200	43	137			<5	mg/kg	TM38/PM0
Chloride #	<0.3	<0.3	<0.3	0.4	<0.3			<0.3	mg/l	TM38/PM0
Chloride #	<3	<3	<3	4	<3			<3	mg/kg	TM38/PM0
Dissolved Organic Carbon	<2	3	4	5	4			<2	mg/l	TM60/PM0
Dissolved Organic Carbon	<20	30	40	50	40			<20	mg/kg	TM60/PM0
pН	8.33	8.26	8.16	8.26	8.16			<0.01	pH units	TM73/PM0
Total Dissolved Solids #	79	72	114	132	103			<35	mg/l	TM20/PM0
Total Dissolved Solids #	790	720	1141	1320	1030			<350	mg/kg	TM20/PM0
										<u> </u>

Client Name: Ground Investigations Ireland

Reference: 9429-02-20
Location: Whitehall, Swords Road Extension

Contact: Mike Sutton
EMT Job No: 20/3675

Report: EN12457_2

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

Please see attached notes for all

Depth	2.4	0.5	0.5	0.7	0.5							e attached n	
COC No / misc											abbrevi	ations and a	ronyms
Containers	VJT	VJT	VJT	VJT	VJT								
Sample Date	05/03/2020	05/03/2020	05/03/2020	05/03/2020	05/03/2020								
Sample Type	Soil	Soil	Soil	Soil	Soil								
Batch Number	1	1	1	1	1				Stable Non-				Method
Date of Receipt	09/03/2020	09/03/2020	09/03/2020	09/03/2020	09/03/2020			Inert	reactive	Hazardous	LOD LOR	Units	No.
Solid Waste Analysis													
Total Organic Carbon #	0.70	0.51	0.82	3.73	0.68			3	5	6	<0.02	%	TM21/PM24
Sum of BTEX	<0.017	<0.017	<0.017	<0.017	<0.017			6	-	-	<0.017	mg/kg	TM15/PM10
Sum of 7 PCBs#	<0.035	< 0.035	<0.035	<0.035	<0.035			1	-	-	<0.035	mg/kg	TM17/PM8
Mineral Oil	<30	<30	<30	32	<30			500	-	-	<30	mg/kg	TM5/PM8/PM16
PAH Sum of 6#	<0.22	<0.22	<0.22	0.49	0.44			-	-	-	<0.22	mg/kg	TM4/PM8
PAH Sum of 17	<0.64	<0.64	<0.64	0.86	1.46			100	-	-	<0.64	mg/kg	TM4/PM8
CEN 10:1 Leachate													
Arsenic #	<0.025	<0.025	<0.025	<0.025	<0.025			0.5	2	25	<0.025	mg/kg	TM30/PM17
Barium #	0.04	<0.03	<0.03	0.07	0.03			20	100	300	<0.03	mg/kg	TM30/PM17
Cadmium #	<0.005	<0.005	<0.005	<0.005	<0.005			0.04	1	5	<0.005	mg/kg	TM30/PM17
Chromium #	<0.015	<0.015	<0.015	<0.015	<0.015			0.5	10	70	<0.015	mg/kg	TM30/PM17
Copper "	<0.07	<0.07	<0.07	<0.07	<0.07			2	50	100	<0.07	mg/kg	TM30/PM17
Mercury **	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001			0.01	0.2	2	<0.0001	mg/kg	TM61/PM0
Molybdenum #	0.31	0.13	0.02	0.08	0.10			0.5	10	30	<0.02	mg/kg	TM30/PM17
Nickel*	<0.02	<0.02	<0.02	<0.02	<0.02			0.4	10	40	<0.02	mg/kg	TM30/PM17
Lead "	<0.05	<0.05	<0.05	<0.05	<0.05			0.5	10	50	<0.05	mg/kg	TM30/PM17
Antimony #	<0.02	<0.02	<0.02	<0.02	0.03			0.06	0.7	5	<0.02	mg/kg	TM30/PM17
Selenium #	0.05	<0.03	<0.03	<0.03	<0.03			0.1	0.5	7	<0.03	mg/kg	TM30/PM17
Zinc "	<0.03	<0.03	<0.03	0.04	0.03			4	50	200	<0.03	mg/kg	TM30/PM17
Total Dissolved Solids #	790	720	1141	1320	1030			4000	60000	100000	<350	mg/kg	TM20/PM0
Dissolved Organic Carbon	<20	30	40	50	40			500	800	1000	<20	mg/kg	TM60/PM0
Mass of raw test portion	0.1007	0.1079	0.1121	0.115	0.1058			-	-	-		kg	NONE/PM17
Dry Matter Content Ratio	89.3	83.7	80.0	78.3	85.5			-	-	-	<0.1	%	NONE/PM4
Leachant Volume	0.889	0.882	0.878	0.875	0.885			-	-	-		I	NONE/PM17
Eluate Volume	0.8	8.0	0.8	0.8	0.8			-	-	-		ı	NONE/PM17
pH "	8.66	8.55	8.24	8.25	8.55			-	-	-	<0.01	pH units	TM73/PM11
Phenol	<0.1	<0.1	<0.1	<0.1	<0.1			1	-	-	<0.1	mg/kg	TM26/PM0
Charida.	-	_		_									T14470/D110
Fluoride	5	5	3	5	4			-	-	-	<3	mg/kg	TM173/PM0
Sulphate as SO4#	48	41	200	43	137			1000	20000	50000	<5	mg/kg	TM38/PM0
Chloride #	<3	<3	<3	4	<3			800	15000	25000	<3	mg/kg	TM38/PM0
	-	-									-		

Client Name: Ground Investigations Ireland

Reference: 9429-02-20

Location: Whitehall, Swords Road Extension

Contact: Mike Sutton EMT Job No: 20/3675

SVOC Report : Solid

24-Denterophenor											
COC Not Mines Continues	EMT Sample No.	1-3	4-6	7-9	16-18	22-24					
COC Not Mines Continues											
COC Not mise	Sample ID	TP01	TP02	TP03	TP07	TP10					
COC Not mise											
Containers	•	2.4	0.5	0.5	0.7	0.5					
Sample Date		VIIT	VIT	VIT	VIT	VIT			abbievie	ations and a	oronymo
Sarright Type Soil Soil											
Date of Receipt 0903/2020	Sample Type	Soil	Soil	Soil	Soil	Soil					
Second	Batch Number	1	1	1	1	1			LOD/LOR	Units	
Phenois		09/03/2020	09/03/2020	09/03/2020	09/03/2020	09/03/2020			202/2011	01110	No.
2-Chlosophono											
Alterlyphipmen		~10	~10	-10	-10	-10			~10	ua/ka	TM16/DM8
2-Misrophenol											
2.4-Dimentylphonol	2-Nitrophenol										1
2.4.5 FireInicorphenol <10	2,4-Dichlorophenol #	<10	<10	<10	<10	<10			<10	ug/kg	TM16/PM8
24.6 Tickhorophenol	2,4-Dimethylphenol										
AChiero-Ametrychenol <10	•										1
Alberhytchenol											1
A-Nitrophenol	4-Methylphenol										
Pentachirophenol	4-Nitrophenol										1
PAHS 2-Chlorophthalene	Pentachlorophenol			<10	<10						1
2-Chioronaphthalene " 20 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	Phenol [#]	<10	<10	<10	<10	<10			<10	ug/kg	TM16/PM8
2-Methylnaphthalane										-	
Phthalates C C100 C100 C100 C100 C100 C100 C100 C100 Ug/kg TM16/PM8 Bulybenzyl phthalate C100 C100 C100 C100 C100 C100 C100 C100 Ug/kg TM16/PM8 Din-Dctyl phthalate C100 Ug/kg TM16/PM8 TM16/PM8 C100 Ug/kg TM16/PM8 TM16/PM8 C100 Ug/kg TM16/PM8 TM16/PM8 C100 Ug/kg TM16/PM8											
Bis(2-ethythexyl) phthalate		22	<10	<10	24	<10			<10	ug/Kg	TIVITO/PIVIS
Butybenzyl phthalate		<100	<100	<100	<100	<100			<100	ug/kg	TM16/PM8
Din-Octyl phthalate	Butylbenzyl phthalate										
Diethyl phthalate	Di-n-butyl phthalate	<100	<100	<100	<100	<100			<100	ug/kg	TM16/PM8
Dimethyl phthalate	Di-n-Octyl phthalate										
Other SVOCs C10 <10 <10 <10 <10 <10 <10 ug/kg TM16/PM8 1,2-Dichlorobenzene <10											
1,2-Dichlorobenzene		<100	<100	<100	<100	<100			<100	ug/kg	TIVIT6/PIVI8
1,2,4-Trichlorobenzene		<10	<10	<10	<10	<10			<10	ug/kg	TM16/PM8
1,4-Dichlorobenzene	1,2,4-Trichlorobenzene #	<10		<10	<10	<10					
2-Nitroaniline	1,3-Dichlorobenzene	<10	<10	<10	<10	<10			<10	ug/kg	TM16/PM8
2,4-Dinitrotoluene	1,4-Dichlorobenzene										1
2.6-Dinitrotoluene	2-Nitroaniline										
Sa-Nitroaniline	*										
4-Bromophenylptenylether	*										1
4-Chlorophenylphenylether < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 1	4-Bromophenylphenylether #										
## A-Nitroaniline	4-Chloroaniline	<10	<10	<10	<10	<10			<10	ug/kg	TM16/PM8
Azobenzene	4-Chlorophenylphenylether										
Bis(2-chloroethoxy)methane											
Bis(2-chloroethyl)ether											
Carbazole <10	,										
Dibenzofuran Surrogate Recovery 2-Fluorobipheny Surrogate Recov	Carbazole										
Hexachlorobutadiene	Dibenzofuran #		<10	<10					<10		1
Hexachlorocyclopentadiene <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	Hexachlorobenzene #										
Hexachloroethane <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	Hexachlorobutadiene #										
Suprogate Recovery 2-Fluorobiphenyl 123 123 118 121 128											1
N-nitrosodi-n-propylamine											
Nitrobenzene	N-nitrosodi-n-propylamine #										
	Nitrobenzene #	<10	<10	<10	<10	<10			<10	ug/kg	
Surrogate Recovery p-Terphenyl-d14 117 119 117 117 130 < 0 % TM16/PM8	Surrogate Recovery 2-Fluorobiphenyl										
	Surrogate Recovery p-Terphenyl-d14	117	119	117	117	130			<0	%	TM16/PM8

Client Name: Ground Investigations Ireland

Reference: 9429-02-20

Location: Whitehall, Swords Road Extension

Contact: Mike Sutton EMT Job No: 20/3675

VOC Report : Solid

EMIT JOB NO:	20/30/3								_		
EMT Sample No.	1-3	4-6	7-9	16-18	22-24						
Sample ID	TP01	TP02	TP03	TP07	TP10						
Depth	2.4	0.5	0.5	0.7	0.5				Please se	e attached n	otes for all
COC No / misc				-						ations and a	
Containers	VJT	VJT	VJT	VJT	VJT						
Sample Date	05/03/2020	05/03/2020	05/03/2020	05/03/2020	05/03/2020						
Sample Type	Soil	Soil	Soil	Soil	Soil						1
Batch Number	1	1	1	1	1				LOD/LOR	Units	Method No.
VOC MS	09/03/2020	09/03/2020	09/03/2020	09/03/2020	09/03/2020						INO.
Dichlorodifluoromethane	<2	<2	<2	<2	<2				<2	ug/kg	TM15/PM10
Methyl Tertiary Butyl Ether #	<2	<2	<2	<2	<2				<2	ug/kg	TM15/PM10
Chloromethane#	<3	<3	<3	<3	<3				<3	ug/kg	TM15/PM10
Vinyl Chloride	<2	<2	<2	<2	<2				<2	ug/kg	TM15_A/PM10
Bromomethane	<1	<1	<1	<1	<1				<1	ug/kg	TM15/PM10
Chloroethane #	<2	<2	<2	<2	<2				<2	ug/kg	TM15/PM10
Trichlorofluoromethane #	<2	<2	<2	<2	<2				<2	ug/kg	TM15/PM10
1,1-Dichloroethene (1,1 DCE) #	<6	<6	<6	<6	<6				<6	ug/kg	TM15/PM10 TM15/PM10
Dichloromethane (DCM) # trans-1-2-Dichloroethene #	<30 <3	<30 <3	<30 <3	<30 <3	<30 <3				<30 <3	ug/kg ug/kg	TM15/PM10
1,1-Dichloroethane #	<3	<3	<3	<3	<3				<3	ug/kg	TM15/PM10
cis-1-2-Dichloroethene #	<3	<3	<3	<3	<3				<3	ug/kg	TM15/PM10
2,2-Dichloropropane	<4	<4	<4	<4	<4				<4	ug/kg	TM15/PM10
Bromochloromethane #	<3	<3	<3	<3	<3				<3	ug/kg	TM15/PM10
Chloroform #	<3	<3	<3	<3	<3				<3	ug/kg	TM15/PM10
1,1,1-Trichloroethane #	<3	<3	<3	<3	<3				<3	ug/kg	TM15/PM10
1,1-Dichloropropene #	<3	<3	<3	<3	<3				<3	ug/kg	TM15/PM10
Carbon tetrachloride #	<4	<4	<4	<4	<4				<4	ug/kg	TM15/PM10 TM15/PM10
1,2-Dichloroethane # Benzene #	<4 <3	<4 <3	<4 <3	<4 <3	<4 <3				<4 <3	ug/kg ug/kg	TM15/PM10
Trichloroethene (TCE) #	<3	<3	<3	<3	<3				<3	ug/kg ug/kg	TM15/PM10
1,2-Dichloropropane #	<6	<6	<6	<6	<6				<6	ug/kg	TM15/PM10
Dibromomethane #	<3	<3	<3	<3	<3				<3	ug/kg	TM15/PM10
Bromodichloromethane #	<3	<3	<3	<3	<3				<3	ug/kg	TM15/PM10
cis-1-3-Dichloropropene	<4	<4	<4	<4	<4				<4	ug/kg	TM15/PM10
Toluene #	<3	<3	<3	<3	<3				<3	ug/kg	TM15/PM10
trans-1-3-Dichloropropene	<3	<3	<3	<3	<3				<3	ug/kg	TM15/PM10
1,1,2-Trichloroethane #	<3	<3	<3	<3	<3				<3	ug/kg	TM15/PM10 TM15/PM10
Tetrachloroethene (PCE) # 1,3-Dichloropropane #	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3				<3 <3	ug/kg ug/kg	TM15/PM10
Dibromochloromethane #	<3	<3	<3	<3	<3				<3	ug/kg ug/kg	TM15/PM10
1,2-Dibromoethane #	<3	<3	<3	<3	<3				<3	ug/kg	TM15/PM10
Chlorobenzene #	<3	<3	<3	<3	<3				<3	ug/kg	TM15/PM10
1,1,1,2-Tetrachloroethane #	<3	<3	<3	<3	<3				<3	ug/kg	TM15/PM10
Ethylbenzene #	<3	<3	<3	<3	<3				<3	ug/kg	TM15/PM10
m/p-Xylene #	<5	<5	<5	<5	<5				<5	ug/kg	TM15/PM10
o-Xylene #	<3	<3	<3	<3	<3				<3	ug/kg	TM15/PM10
Styrene	<3	<3	<3	<3	<3				<3	ug/kg	TM15_A/PM10
Bromoform	<3 <3	<3 <3	<3	<3 <3	<3 <3				<3	ug/kg	TM15/PM10 TM15/PM10
Isopropylbenzene # 1,1,2,2-Tetrachloroethane #	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3				<3 <3	ug/kg ug/kg	TM15/PM10
Bromobenzene	<2	<2	<2	<2	<2				<2	ug/kg	TM15/PM10
1,2,3-Trichloropropane #	<4	<4	<4	<4	<4				<4	ug/kg	TM15/PM10
Propylbenzene #	<4	<4	<4	<4	<4				<4	ug/kg	TM15/PM10
2-Chlorotoluene	<3	<3	<3	<3	<3				<3	ug/kg	TM15/PM10
1,3,5-Trimethylbenzene #	<3	<3	<3	<3	<3				<3	ug/kg	TM15/PM10
4-Chlorotoluene	<3	<3	<3	<3	<3				<3	ug/kg	TM15/PM10
tert-Butylbenzene #	<5	<5	<5	<5	<5				<5	ug/kg	TM15/PM10
1,2,4-Trimethylbenzene #	<6	<6	<6	<6	<6				<6	ug/kg	TM15/PM10
sec-Butylbenzene# 4-Isopropyltoluene#	<4 <4	<4 <4	<4 <4	<4 <4	<4 <4				<4 <4	ug/kg ug/kg	TM15/PM10 TM15/PM10
4-isopropyltoluene 1,3-Dichlorobenzene #	<4 <4	<4 <4	<4 <4	<4 <4	<4 <4				<4 <4	ug/kg ug/kg	TM15/PM10
1,4-Dichlorobenzene #	<4	<4	<4	<4	<4				<4	ug/kg	TM15/PM10
n-Butylbenzene#	<4	<4	<4	<4	<4				<4	ug/kg	TM15/PM10
1,2-Dichlorobenzene #	<4	<4	<4	<4	<4				<4	ug/kg	TM15/PM10
1,2-Dibromo-3-chloropropane #	<4	<4	<4	<4	<4				<4	ug/kg	TM15/PM10
1,2,4-Trichlorobenzene #	<7	<7	<7	<7	<7				<7	ug/kg	TM15/PM10
Hexachlorobutadiene	<4	<4	<4	<4	<4				<4	ug/kg	TM15/PM10
1,2,3-Trichlorobenzene #	<7	<7	<7	<7	<7				<7	ug/kg	TM15/PM10
Surrogate Recovery Toluene D8	91	95	97	88	92				<0	%	TM15/PM10
Surrogate Recovery 4-Bromofluorobenzene	65	89	93	62	78			l	<0	%	TM15/PM10

EPH Interpretation Report

Client Name: Ground Investigations Ireland Matrix : Solid

Reference: 9429-02-20

Location: Whitehall, Swords Road Extension

Contact: Mike Sutton

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	EPH Interpretation
20/3675	1	TP01	2.4	1-3	No interpretation possible
20/3675	1	TP02	0.5	4-6	No interpretation possible
20/3675	1	TP03	0.5	7-9	No interpretation possible
20/3675	1	TP07	0.7	16-18	No interpretation possible
20/3675	1	TP10	0.5	22-24	No interpretation possible

Client Name: Ground Investigations Ireland

Reference: 20/02/9429

Location: Whitehall, Swords Road Extension

Contact: Mike Sutton

Note:

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Samples are retained for not less than 6 months from the date of analysis unless specifically requested.

Opinions, including ACM type and Asbestos level less than 0.1%, lie outside the scope of our UKAS accreditation.

Where the sample is not taken by a Element Materials Technology consultant, Element Materials Technology cannot be responsible for inaccurate or unrepresentative sampling.

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Date Of Analysis	Analysis	Result
20/3675	1	TP01	2.4	2	18/03/2020	General Description (Bulk Analysis)	soil.stones
					18/03/2020	Asbestos Fibres	NAD
					18/03/2020	Asbestos ACM	NAD
					18/03/2020	Asbestos Type	NAD
					18/03/2020	Asbestos Level Screen	NAD
20/3675	1	TP02	0.5	5	18/03/2020	General Description (Bulk Analysis)	soil-stones
					18/03/2020	Asbestos Fibres	NAD
					18/03/2020	Asbestos ACM	NAD
					18/03/2020	Asbestos Type	NAD
					18/03/2020	Asbestos Level Screen	NAD
20/3675	1	TP03	0.5	8	18/03/2020	General Description (Bulk Analysis)	soil.stones
					18/03/2020	Asbestos Fibres	NAD
					18/03/2020	Asbestos ACM	NAD
					18/03/2020	Asbestos Type	NAD
					18/03/2020	Asbestos Level Screen	NAD
20/3675	1	TP07	0.7	17	18/03/2020	General Description (Bulk Analysis)	Soil/Stone
					18/03/2020	Asbestos Fibres	NAD
					18/03/2020	Asbestos ACM	NAD
					18/03/2020	Asbestos Type	NAD
					18/03/2020	Asbestos Level Screen	NAD
20/3675	1	TP10	0.5	23	18/03/2020	General Description (Bulk Analysis)	soil-stones
					18/03/2020	Asbestos Fibres	NAD
					18/03/2020	Asbestos ACM	NAD
					18/03/2020	Asbestos Type	NAD
					18/03/2020	Asbestos Level Screen	NAD

Notification of Deviating Samples

Client Name: Ground Investigations Ireland Matrix : Solid

Reference: 9429-02-20

Location: Whitehall, Swords Road Extension

Contact: Mike Sutton

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason
20/3675	1	TP01	2.4	1-3	voc	Analysis taken from a previously sampled container.
20/3675	1	TP07	0.7	16-18	voc	Analysis taken from a previously sampled container.

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 20/3675

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is guoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

EMT Job No.: 20/3675

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher, this result is not accredited.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
со	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
ОС	Outside Calibration Range
	·

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.	PM0	No preparation is required.			AR	
TM4	Modified USEPA 8270 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM5	Modified 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM16	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	
TM5	Modified 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5	Modified 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM15	Modified USEPA 8260. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM15	Modified USEPA 8260. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM16	Modified USEPA 8270. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM16	Modified USEPA 8270. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM17	Modified US EPA method 8270. Determination of specific Polychlorinated Biphenyl congeners by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM20	Modified BS 1377-3: 1990/USEPA 160.3 Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes		AR	Yes
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Dried and ground solid samples are washed with hydrochloric acid, then rinsed with deionised water to remove the mineral carbon before TOC analysis.	Yes		AD	Yes
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.			AR	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes		AD	Yes
ТМ30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM17	Modified method BS EN12457-2 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.	Yes		AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co-elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results can be confirmed using GCMS.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co-elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results can be confirmed using GCMS.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods 325.2 (Chloride), 375.4 (Sulphate), 365.2 (o-Phosphate), 353.1 (TON), 354.1 (Nitrite), 350.1 (NH4+) comparable to BS ISO 15923-1, 7196A (Hex Cr)	PM0	No preparation is required.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods 325.2 (Chloride), 375.4 (Sulphate), 365.2 (o-Phosphate), 353.1 (TON), 354.1 (Nitrite), 350.1 (NH4+) comparable to BS ISO 15923-1, 7196A (Hex Cr)	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AD	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods 325.2 (Chloride), 375.4 (Sulphate), 365.2 (o-Phosphate), 353.1 (TON), 354.1 (Nitrite), 350.1 (NH4+) comparable to BS ISO 15923-1, 7196A (Hex Cr)	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.			AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods 325.2 (Chloride), 375.4 (Sulphate), 365.2 (o-Phosphate), 353.1 (TON), 354.1 (Nitrite), 350.1 (NH4+) comparable to BS ISO 15923-1, 7196A (Hex Cr)	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes
TM50	Acid soluble sulphate (Total Sulphate) analysed by ICP-OES	PM29	A hot hydrochloric acid digest is performed on a dried and ground sample, and the resulting liquor is analysed.	Yes		AD	Yes
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060, APHA Standard Methods for Examination of Water and Wastewater 5310B, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.			AR	Yes
TM61	Modified US EPA methods 245.7 and 200.7. Determination of Mercury by Cold Vapour Atomic Fluorescence.	PM0	No preparation is required.	Yes		AR	Yes
TM65	Asbestos Bulk Identification method based on HSG 248.	PM42	Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	
TM73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.			AR	Yes
TM73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM89	Modified USEPA method OIA-1667. Determination of cyanide by Flow Injection Analyser. Where WAD cyanides are required a Ligand displacement step is carried out before analysis.	PM45	As received solid samples are extracted with 1M NaOH by orbital shaker for Cyanide, Sulphide and Thiocyanate analysis.	Yes		AR	Yes
TM107	Determination of Sulphide/Thiocyanate by Skalar Continuous Flow Analyser	PM45	As received solid samples are extracted with 1M NaOH by orbital shaker for Cyanide, Sulphide and Thiocyanate analysis.			AR	Yes
TM108	Determination of Elemental Sulphur by Reversed Phase High Performance Liquid Chromatography with Ultra Violet spectroscopy.	PM114	End over end extraction of dried and crushed soil samples for organic analysis. The solvent mix varies depending on analysis required			AD	Yes
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 340.2	PM0	No preparation is required.			AR	Yes
NONE	No Method Code	NONE	No Method Code			AD	Yes
NONE	No Method Code	PM17	Modified method BS EN12457-2 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.				
NONE	No Method Code	PM17	Modified method BS EN12457-2 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.			AR	
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.			AR	
TM15_A	Modified USEPA 8260. Quantitative Determination of Volatile Organic Compounds, Vinyl Chloride & Styrene by Headspace GC-MS.	PM10	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA P: +44 (0) 1244 833780

F: +44 (0) 1244 833781

W: www.element.com

Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co. Dublin Ireland

Attention: Mike Sutton

Date: 22nd July, 2020

Your reference: 9429-02-20

Our reference : Test Report 20/9186 Batch 1

Location : Whitehall Swords Road

Date samples received: 14th July, 2020

Status: Final report

Issue:

Ten samples were received for analysis on 14th July, 2020 of which ten were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

Phil Sommerton BSc

Senior Project Manager

Please include all sections of this report if it is reproduced

Client Name: Ground Investigations Ireland

Reference: 9429-02-20

Location: Whitehall Swords Road

Contact: Mike Sutton EMT Job No: 20/9186

Report : Solid

EMT Job No:	20/9186												
EMT Sample No.	1	2	3	4	5	6	7	8	9	10			
Sample ID	TP01	TP08	BH01	BH03	BH03	BH05	BH07	BH08	BH09	BH07			
Depth	0.70	0.80	4.00	2.00	5.00	1.00	2.00	3.00	4.00	1.50	Please se	e attached n	otes for all
COC No / misc											abbrevi	ations and a	cronyms
Containers	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т			
Sample Date	10/07/2020	10/07/2020	10/07/2020	10/07/2020	10/07/2020	10/07/2020	10/07/2020	10/07/2020	10/07/2020	10/07/2020			
Sample Type	Soil		,										
Batch Number		1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method No.
Date of Receipt	14/07/2020	14/07/2020	14/07/2020	14/07/2020	14/07/2020	14/07/2020	14/07/2020	14/07/2020	14/07/2020	14/07/2020			
Chloride (2:1 Ext BRE) #	0.008	0.008	0.013	0.006	0.013	0.006	0.030	0.006	0.013	0.006	<0.002	g/l	TM38/PM20
Sulphate as SO4 (2:1 Ext) #	0.0478	0.0202	0.1036	0.0287	0.2592	0.1264	0.0978	0.0532	0.2981	0.0271	<0.0015	g/l	TM38/PM20
pH#	8.62	8.74	8.36	8.61	8.13	8.25	8.46	8.44	8.16	8.76	<0.01	pH units	TM73/PM11
	i	ĺ	1	i	i	ĺ	i	ĺ	i	i	i	i	1

Client Name: Ground Investigations Ireland

Reference: 9429-02-20

Location: Whitehall Swords Road

Contact: Mike Sutton

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason				
	No deviating sample report results for job 20/9186									

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 20/9186

SOILS

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is guoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

EMT Job No.:

20/9186

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher, this result is not accredited.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
со	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
ОС	Outside Calibration Range

EMT Job No: 20/9186

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993 (comparabl	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AD	Yes
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377-3:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA P: +44 (0) 1244 833780

F: +44 (0) 1244 833781

W: www.element.com

Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co. Dublin Ireland

Attention: Mike Sutton

Date: 28th July, 2020

Your reference: 9429-02-20

Our reference : Test Report 20/9618 Batch 1

Location: Whitehall Swords

Date samples received : 22nd July, 2020

Status: Final report

Issue:

One sample was received for analysis on 22nd July, 2020 of which one was scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

Bruce Leslie

Project Manager

Please include all sections of this report if it is reproduced $\label{eq:please} % \[\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}$

Client Name: Ground Investigations Ireland

Reference: 9429-02-20
Location: Whitehall Swords
Contact: Mike Sutton
EMT Job No: 20/9618

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

EMT Job No:	20/9618							
EMT Sample No.	1							
Sample ID	TP08							
Depth	0.70					Diagon	e attached n	etee for all
COC No / misc						abbrevi	ations and a	ronyms
Containers								
Sample Date	20/07/2020							
Sample Type	Soil							
Batch Number	1					1.00/1.00	11-76-	Method
Date of Receipt	22/07/2020					LOD/LOR	Units	No.
Chloride (2:1 Ext BRE)#	0.004					<0.002	g/l	TM38/PM20
Sulphate as SO4 (2:1 Ext) #	0.0089					<0.0015	g/l	TM38/PM20
pH#	8.48					<0.01	pH units	TM73/PM11

Client Name: Ground Investigations Ireland

Reference: 9429-02-20 Whitehall Swords

Location:

Mike Sutton Contact:

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason
					No deviating sample report results for job 20/9618	

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 20/9618

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

EMT Job No.:

20/9618

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
M	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher, this result is not accredited.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
ОС	Outside Calibration Range
·	

EMT Job No: 20/9618

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993 (comparabl	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AD	Yes
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377-3:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA P: +44 (0) 1244 833780

F: +44 (0) 1244 833781

W: www.element.com

Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co. Dublin Ireland

Attention: Mike Sutton

Date: 22nd July, 2020

Your reference : 9429-02-20

Our reference : Test Report 20/9144 Batch 1

Location: Whitehall, Swords, Road Extension

Date samples received: 14th July, 2020

Status: Final report

Issue:

Three samples were received for analysis on 14th July, 2020 of which three were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

Phil Sommerton BSc

Senior Project Manager

Please include all sections of this report if it is reproduced

Client Name: Ground Investigations Ireland

Reference: 9429-02-20

Location: Whitehall, Swords, Road Extension

Contact: Mike Sutton Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

Report : Liquid

EMT Job No: 20/9144 H=H₂SO₄, Z=ZnAc, N=NaOH, HN=HNO₃

EMT Job No:	20/9144					H=H ₂ SO ₄ ,	Z=ZnAc, N=	NaOH, HN=	:HN0 ₃	_		
EMT Sample No.	1-10	11-16,18-19	21-30									
Sample ID	BH01	BH06	BH10									
Depth												
											e attached n ations and a	
COC No / misc												
Containers	V H HN HCL Z P BOD G	V H HN HCL Z BOD G	V H HN HCL Z P BOD G									
Sample Date	13/07/2020	13/07/2020	13/07/2020									
Sample Type	Ground Water	Ground Water	Ground Water									
Batch Number	1	1	1									Method
Date of Receipt	14/07/2020	14/07/2020	14/07/2020							LOD/LOR	Units	No.
Dissolved Antimony #	<2	<2	<2							<2	ug/l	TM30/PM14
Dissolved Arsenic #	<2.5	2.7	3.4							<2.5	ug/l	TM30/PM14
Dissolved Barium #	108	76	99							<3	ug/l	TM30/PM14
Dissolved Cadmium #	<0.5	<0.5	<0.5							<0.5	ug/l	TM30/PM14
Total Dissolved Chromium #	<1.5	<1.5	<1.5							<1.5	ug/l	TM30/PM14
Dissolved Copper#	<7	<7	<7							<7	ug/l	TM30/PM14
Dissolved Lead #	<5	<5	<5							<5	ug/l	TM30/PM14
Dissolved Mercury#	<1	<1	<1							<1	ug/l	TM30/PM14
Dissolved Molybdenum #	3	14	6							<2	ug/l	TM30/PM14
Dissolved Nickel #	8	12	10							<2	ug/l	TM30/PM14
Dissolved Selenium #	<3	<3	<3							<3	ug/l	TM30/PM14
Dissolved Zinc #	6	4	10							<3	ug/l	TM30/PM14
PAH MS												
Naphthalene #	<0.1	<0.1	<0.1							<0.1	ug/l	TM4/PM30
Acenaphthylene #	<0.013	<0.013	<0.013							<0.013	ug/l	TM4/PM30
Acenaphthene #	<0.013	<0.013	<0.013							<0.013	ug/l	TM4/PM30
Fluorene #	<0.014	<0.014	<0.014							<0.014	ug/l	TM4/PM30
Phenanthrene #	<0.011	<0.011	<0.011							<0.011	ug/l	TM4/PM30
Anthracene #	<0.013	<0.013	<0.013							<0.013	ug/l	TM4/PM30
Fluoranthene#	<0.012	<0.012	<0.012							<0.012	ug/l	TM4/PM30
Pyrene #	<0.013	<0.013	<0.013							<0.013	ug/l	TM4/PM30
Benzo(a)anthracene #	<0.015	<0.015	<0.015							<0.015	ug/l	TM4/PM30
Chrysene #	<0.011	<0.011	<0.011							<0.011	ug/l	TM4/PM30
Benzo(bk)fluoranthene #	<0.018	<0.018	<0.018							<0.018	ug/l	TM4/PM30
Benzo(a)pyrene #	<0.016	<0.016	<0.016							<0.016	ug/l	TM4/PM30
Indeno(123cd)pyrene #	<0.011	<0.011	<0.011							<0.011	ug/l	TM4/PM30
Dibenzo(ah)anthracene #	<0.01	<0.01	<0.01							<0.01	ug/l	TM4/PM30 TM4/PM30
Benzo(ghi)perylene [#] PAH 16 Total [#]	<0.011 <0.195	<0.011 <0.195	<0.011 <0.195							<0.011 <0.195	ug/l ug/l	TM4/PM30
Benzo(b)fluoranthene	<0.195	<0.195	<0.195							<0.195	ug/l	TM4/PM30
Benzo(k)fluoranthene	<0.01	<0.01	<0.01							<0.01	ug/l	TM4/PM30
PAH Surrogate % Recovery	82	88	87							<0	%	TM4/PM30
Methyl Tertiary Butyl Ether #	<0.1	<0.1	<0.1							<0.1	ug/l	TM15/PM10
Benzene #	<0.5	<0.5	<0.5							<0.5	ug/l	TM15/PM10
Toluene #	<5	<5	<5							<5	ug/l	TM15/PM10
Ethylbenzene #	<1	<1	<1							<1	ug/l	TM15/PM10
m/p-Xylene #	<2	<2	<2							<2	ug/l	TM15/PM10
o-Xylene #	<1	<1	<1							<1	ug/l	TM15/PM10
Surrogate Recovery Toluene D8	107	106	108							<0	%	TM15/PM10
Surrogate Recovery 4-Bromofluorobenzene	108	105	108							<0	%	TM15/PM10
		l .		I	l	l				l		<u> </u>

Client Name: Ground Investigations Ireland

20/9144

Reference: 9429-02-20

Location:

EMT Job No:

Whitehall, Swords, Road Extension

Contact: Mike Sutton

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

H=H₂SO₄, Z=ZnAc, N=NaOH, HN=HNO₃

Report : Liquid

EMT Job No:	20/9144				 H=H ₂ SO ₄ ,	Z=ZnAc, N=	:NaUH, HN=	HNU ₃	-		
EMT Sample No.	1-10	11-16,18-19	21-30								
Sample ID	BH01	BH06	BH10								
Depth									Diagon	a attached m	otoo for all
COC No / misc										e attached nations and a	
		V H HN HCL Z BOD G	V H HN HCL Z P BOD G								
Sample Date											
Sample Type	Ground Water	Ground Water	Ground Water							I	
Batch Number	1	1	1						LOD/LOR	Units	Method
Date of Receipt	14/07/2020	14/07/2020	14/07/2020								No.
TPH CWG											
Aliphatics											
>C5-C6#	<10	<10	<10						<10	ug/l	TM36/PM12 TM36/PM12
>C6-C8# >C8-C10#	<10 <10	<10 <10	<10 <10						<10 <10	ug/l ug/l	TM36/PM12
>C10-C10#	<5	<5	<5						<5	ug/l	TM5/PM16/PM30
>C12-C16#	<10	<10	<10						<10	ug/l	TM5/PM16/PM30
>C16-C21#	<10	<10	<10						<10	ug/l	TM5/PM16/PM30
>C21-C35#	<10	<10	<10						<10	ug/l	TM5/PM16/PM30
Total aliphatics C5-35 #	<10	<10	<10						<10	ug/l	TM5/TM36/PM12/PM16/PM30
Aromatics											
>C5-EC7#	<10	<10	<10						<10	ug/l	TM36/PM12
>EC7-EC8#	<10	<10	<10						<10	ug/l	TM36/PM12
>EC8-EC10# >EC10-EC12#	<10	<10	<10						<10	ug/l	TM36/PM12 TM5/PM16/PM30
>EC10-EC12 >EC12-EC16#	<5 <10	<5 <10	<5 <10						<5 <10	ug/l ug/l	TM5/PM16/PM30
>EC16-EC21#	<10	<10	<10						<10	ug/l	TM5/PM16/PM30
>EC21-EC35#	<10	<10	<10						<10	ug/l	TM5/PM16/PM30
Total aromatics C5-35#	<10	<10	<10						<10	ug/l	TM5/TM36/PM12/PM16/PM30
Total aliphatics and aromatics(C5-35) #	<10	<10	<10						<10	ug/l	TMS/TMS6/PM12/PM16/PMS0
PCB 28	<0.1	<0.1	<0.1						<0.1	ug/l	TM17/PM30
PCB 52	<0.1	<0.1	<0.1						<0.1	ug/l	TM17/PM30
PCB 101	<0.1	<0.1	<0.1						<0.1	ug/l	TM17/PM30
PCB 118	<0.1	<0.1	<0.1						<0.1	ug/l	TM17/PM30
PCB 138	<0.1	<0.1	<0.1						<0.1	ug/l	TM17/PM30
PCB 153 PCB 180	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1						<0.1 <0.1	ug/l ug/l	TM17/PM30 TM17/PM30
Total 7 PCBs	<0.7	<0.7	<0.7						<0.7	ug/l	TM17/PM30
1010171 020	40.1	10.1	10.7						10.11	ug,	
Sulphate as SO4 #	384.0	370.7	302.1						<0.5	mg/l	TM38/PM0
Chloride #	16.6	97.5	20.8						<0.3	mg/l	TM38/PM0
Ammoniacal Nitrogen as N#	0.23	0.24	0.14						<0.03	mg/l	TM38/PM0
EL 10	4440	4000	4000						•	0/	T1 470/D1 40
Electrical Conductivity @25C #pH #	1418 7.46	1388 7.62	1066 7.75						<2 <0.01	uS/cm pH units	TM76/PM0 TM73/PM0
рн	7.46	7.62	7.75						<0.01	pri units	TIVI7 3/FIVIO
						1					

Client Name: Ground Investigations Ireland

Reference: 9429-02-20

Location: Whitehall, Swords, Road Extension

Contact: Mike Sutton EMT Job No: 20/9144

SVOC Report : Liquid

EMT Job No:	20/9144								
EMT Sample No.	1-10	11-16,18-19	21-30						
Sample ID	BH01	BH06	BH10						
Depth							Please se	e attached n	otos for all
COC No / misc								ations and a	
Containers	V H HN HCL Z P BOD G	V H HN HCL Z BOD G	V H HN HCL Z P BOD G						
Sample Date	13/07/2020	13/07/2020	13/07/2020						
Sample Type	Ground Water	Ground Water	Ground Water						
Batch Number	1	1	1				LOD/LOR	Units	Method
Date of Receipt	14/07/2020	14/07/2020	14/07/2020				LOD/LOR	Offics	No.
SVOC MS									
Phenois									
2-Chlorophenol #	<1	<1	<1				<1	ug/l	TM16/PM30
2-Methylphenol #	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
2-Nitrophenol	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5				<0.5 <0.5	ug/l	TM16/PM30 TM16/PM30
2,4-Dichlorophenol # 2,4-Dimethylphenol	<0.5	<0.5	<0.5				<0.5	ug/l ug/l	TM16/PM30
2,4,5-Trichlorophenol #	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
2,4,6-Trichlorophenol	<1	<1	<1				<1	ug/l	TM16/PM30
4-Chloro-3-methylphenol #	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
4-Methylphenol	<1	<1	<1				<1	ug/l	TM16/PM30
4-Nitrophenol	<10	<10	<10				<10	ug/l	TM16/PM30
Pentachlorophenol	<1	<1	<1				<1	ug/l	TM16/PM30
Phenol	<1	<1	<1				<1	ug/l	TM16/PM30
PAHs								_	
2-Chloronaphthalene [#] 2-Methylnaphthalene [#]	<1 <1	<1 <1	<1 <1				<1 <1	ug/l ug/l	TM16/PM30 TM16/PM30
Phthalates	_	_	_						
Bis(2-ethylhexyl) phthalate	<5	<5	<5				<5	ug/l	TM16/PM30
Butylbenzyl phthalate	<1	<1	<1				<1	ug/l	TM16/PM30 TM16/PM30
Di-n-butyl phthalate # Di-n-Octyl phthalate	<1.5 <1	<1.5 <1	<1.5 <1				<1.5 <1	ug/l ug/l	TM16/PM30
Diethyl phthalate #	<1	<1	<1				<1	ug/l	TM16/PM30
Dimethyl phthalate	<1	<1	<1				<1	ug/l	TM16/PM30
Other SVOCs 1,2-Dichlorobenzene #	<1	<1	<1				<1	ug/l	TM16/PM30
1,2,4-Trichlorobenzene #	<1	<1	<1				<1	ug/l	TM16/PM30
1,3-Dichlorobenzene #	<1	<1	<1				<1	ug/l	TM16/PM30
1,4-Dichlorobenzene #	<1	<1	<1				<1	ug/l	TM16/PM30
2-Nitroaniline	<1	<1	<1				<1	ug/l	TM16/PM30
2,4-Dinitrotoluene #	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
2,6-Dinitrotoluene	<1	<1	<1				<1	ug/l	TM16/PM30
3-Nitroaniline	<1	<1	<1				<1	ug/l	TM16/PM30
4-Bromophenylphenylether #	<1	<1	<1				<1	ug/l	TM16/PM30 TM16/PM30
4-Chloroaniline	<1 <1	<1 <1	<1 <1				<1 <1	ug/l ug/l	TM16/PM30
4-Chlorophenylphenylether * 4-Nitroaniline	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
Azobenzene #	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
Bis(2-chloroethoxy)methane #	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
Bis(2-chloroethyl)ether#	<1	<1	<1				<1	ug/l	TM16/PM30
Carbazole #	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
Dibenzofuran #	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
Hexachlorobenzene #	<1	<1	<1				<1	ug/l	TM16/PM30
Hexachlorobutadiene #	<1	<1	<1				<1	ug/l	TM16/PM30
Hexachlorocyclopentadiene	<1	<1	<1				<1	ug/l	TM16/PM30
Hexachloroethane # Isophorone #	<1 <0.5	<1 <0.5	<1 <0.5				<1 <0.5	ug/l	TM16/PM30 TM16/PM30
N-nitrosodi-n-propylamine #	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5				<0.5 <0.5	ug/l ug/l	TM16/PM30
Nitrobenzene #	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
Surrogate Recovery 2-Fluorobiphenyl	108	113	103				<0	%	TM16/PM30
Surrogate Recovery p-Terphenyl-d14	126	112	109				<0	%	TM16/PM30
						<u></u>			
		•	•	•	•				•

Client Name: Ground Investigations Ireland

Reference: 9429-02-20

Location: Whitehall, Swords, Road Extension

Contact: Mike Sutton EMT Job No: 20/9144

VOC Report : Liquid

EMT Job No:	20/9144											
EMT Sample No.	1-10	11-16,18-19	21-30									
Sample ID	BH01	BH06	BH10									
Depth										Please se	e attached n	otos for all
COC No / misc											ations and a	
Containers	V H HN HCL Z P BOD G	V H HN HCL Z BOD G	V H HN HCL Z P BOD G									
Sample Date	13/07/2020	13/07/2020										
Sample Type	Ground Water	Ground Water										1
Batch Number Date of Receipt	1 14/07/2020	1 14/07/2020	1 14/07/2020							LOD/LOR	Units	Method No.
VOC MS		. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
Dichlorodifluoromethane	<2	<2	<2							<2	ug/l	TM15/PM10
Methyl Tertiary Butyl Ether #	<0.1	<0.1	<0.1							<0.1	ug/l	TM15/PM10
Chloromethane # Vinyl Chloride #	<3 <0.1	<3 <0.1	<3 <0.1							<3 <0.1	ug/l ug/l	TM15/PM10 TM15/PM10
Bromomethane	<1	<1	<1							<1	ug/l	TM15/PM10
Chloroethane #	<3	<3	<3							<3	ug/l	TM15/PM10
Trichlorofluoromethane #	<3	<3	<3							<3	ug/l	TM15/PM10
1,1-Dichloroethene (1,1 DCE) #	<3	<3	<3							<3	ug/l	TM15/PM10
Dichloromethane (DCM) # trans-1-2-Dichloroethene #	<5 <3	<5 <3	<5 <3							<5 <3	ug/l ug/l	TM15/PM10 TM15/PM10
1,1-Dichloroethane#	<3	<3	<3							<3	ug/l	TM15/PM10
cis-1-2-Dichloroethene#	<3	<3	<3							<3	ug/l	TM15/PM10
2,2-Dichloropropane	<1	<1	<1							<1	ug/l	TM15/PM10
Bromochloromethane #	<2	<2	<2							<2	ug/l	TM15/PM10 TM15/PM10
Chloroform # 1,1,1-Trichloroethane #	<2 <2	<2 <2	<2 <2							<2 <2	ug/l ug/l	TM15/PM10
1,1-Dichloropropene #	<3	<3	<3							<3	ug/l	TM15/PM10
Carbon tetrachloride #	<2	<2	<2							<2	ug/l	TM15/PM10
1,2-Dichloroethane #	<2	<2	<2							<2	ug/l	TM15/PM10
Benzene#	<0.5	<0.5	<0.5							<0.5	ug/l	TM15/PM10 TM15/PM10
Trichloroethene (TCE) # 1,2-Dichloropropane #	<3 <2	<3 <2	<3 <2							<3 <2	ug/l ug/l	TM15/PM10
Dibromomethane #	<3	<3	<3							<3	ug/l	TM15/PM10
Bromodichloromethane #	<2	<2	<2							<2	ug/l	TM15/PM10
cis-1-3-Dichloropropene	<2	<2	<2							<2	ug/l	TM15/PM10
Toluene [#] trans-1-3-Dichloropropene	<5 <2	<5 <2	<5 <2							<5 <2	ug/l ug/l	TM15/PM10 TM15/PM10
1,1,2-Trichloroethane#	<2	<2	<2							<2	ug/l	TM15/PM10
Tetrachloroethene (PCE) #	<3	<3	<3							<3	ug/l	TM15/PM10
1,3-Dichloropropane #	<2	<2	<2							<2	ug/l	TM15/PM10
Dibromochloromethane #	<2	<2	<2							<2	ug/l	TM15/PM10 TM15/PM10
1,2-Dibromoethane # Chlorobenzene #	<2 <2	<2 <2	<2 <2							<2 <2	ug/l ug/l	TM15/PM10
1,1,1,2-Tetrachloroethane #	<2	<2	<2							<2	ug/l	TM15/PM10
Ethylbenzene #	<1	<1	<1							<1	ug/l	TM15/PM10
m/p-Xylene #	<2	<2	<2							<2	ug/l	TM15/PM10
o-Xylene [#] Styrene	<1 <2	<1 <2	<1 <2							<1 <2	ug/l ug/l	TM15/PM10 TM15/PM10
Bromoform #	<2	<2	<2							<2	ug/l	TM15/PM10
Isopropylbenzene #	<3	<3	<3							<3	ug/l	TM15/PM10
1,1,2,2-Tetrachloroethane	<4	<4	<4							<4	ug/l	TM15/PM10
Bromobenzene#	<2	<2	<2							<2	ug/l	TM15/PM10
1,2,3-Trichloropropane * Propylbenzene *	<3 <3	<3 <3	<3 <3							<3 <3	ug/l ug/l	TM15/PM10 TM15/PM10
2-Chlorotoluene #	<3	<3	<3							<3	ug/l	TM15/PM10
1,3,5-Trimethylbenzene #	<3	<3	<3							<3	ug/l	TM15/PM10
4-Chlorotoluene #	<3	<3	<3							<3	ug/l	TM15/PM10
tert-Butylbenzene # 1,2,4-Trimethylbenzene #	<3 <3	<3 <3	<3 <3							<3 <3	ug/l	TM15/PM10 TM15/PM10
sec-Butylbenzene #	<3 <3	<3 <3	<3 <3							<3 <3	ug/l ug/l	TM15/PM10
4-Isopropyltoluene #	<3	<3	<3							<3	ug/l	TM15/PM10
1,3-Dichlorobenzene #	<3	<3	<3							<3	ug/l	TM15/PM10
1,4-Dichlorobenzene #	<3	<3	<3							<3	ug/l	TM15/PM10
n-Butylbenzene # 1,2-Dichlorobenzene #	<3 <3	<3 <3	<3 <3							<3 <3	ug/l ug/l	TM15/PM10 TM15/PM10
1,2-Dibromo-3-chloropropane	<2	<2	<2							<2	ug/l	TM15/PM10
1,2,4-Trichlorobenzene	<3	<3	<3							<3	ug/l	TM15/PM10
Hexachlorobutadiene	<3	<3	<3							<3	ug/l	TM15/PM10
Naphthalene	<2	<2	<2							<2	ug/l	TM15/PM10
1,2,3-Trichlorobenzene Surrogate Recovery Toluene D8	<3 107	<3 106	<3 108							<3 <0	ug/l %	TM15/PM10 TM15/PM10
Surrogate Recovery 4-Bromofluorobenzene	107	105	108							<0	%	TM15/PM10
Consider the covery 4-promotion or the control of t	100	100	106	l	<u>l</u>	l	l	l	l	<0	70	TIVITO/PIVIT

Client Name: Ground Investigations Ireland

Reference: 9429-02-20

Location: Whitehall, Swords, Road Extension

Contact: Mike Sutton

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason
					No deviating sample report results for job 20/9144	

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 20/9144

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is guoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

EMT Job No.: 20/9144

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher, this result is not accredited.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
со	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
ОС	Outside Calibration Range
	·

EMT Job No: 20/9144

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM16/PM30	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE/Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM5/TM36	please refer to TM5 and TM36 for method details	PM12/PM16/PM30	please refer to PM16/PM30 and PM12 for method details	Yes			
TM15	Modified USEPA 8260B v2:1996. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.				
TM15	Modified USEPA 8260B v2:1996. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes			
TM16	Modified USEPA 8270D v5:2014. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM16	Modified USEPA 8270D v5:2014. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM17	Modified US EPA method 8270D v5:2014. Determination of specific Polychlorinated Biphenyl congeners by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP	PM14	Preparation of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for Dissolved metals, and remain unfiltered for Total metals then acidified	Yes			

EMT Job No: 20/9144

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID coelutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE re	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes			
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993 (comparabl	PM0	No preparation is required.	Yes			
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377-3:1990. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			
TM76	Modified US EPA method 120.1 (1982). Determination of Specific Conductance by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			

APPENDIX 7 – Groundwater Monitoring

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176

Email: info@gii.ie Web: www.gii.ie

GROUNDWATER MONITORING

Whithall Swords Road Extension

BOREHOLE	DATE	TIME	GROUNDWATER (m BGL)	Comments
BH01	30/06/2020	17.13	1.77	
BH06	30/06/2020	17.23	5.21	
BH10	30/06/2020	17.17	1.76	

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176

Email: info@gii.ie Web: www.gii.ie

GROUNDWATER MONITORING

Whitehall, Swords

BOREHOLE	DATE	TIME	GROUNDWATER (m BGL)	Comments
BH01	13/07/2020	14:02	1.52	
BH06	13/07/2020	15:05	4.15	
BH10	13/07/2020	14:45	1.74	

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176

Email: info@gii.ie Web: www.gii.ie

GROUNDWATER MONITORING

Whithall Swords Road Extension

BOREHOLE	DATE	TIME	GROUNDWATER (m BGL)	Comments
BH01	13/08/2020	8.03	1.86	
BH06	13/08/2020	8.09	3.65	
BH10	13/08/2020	8.20	1.57	